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Extending the Utility and Scope of the Reaction 
 

Inspired by our chemoselective reduction protocol for converting amides 
to aldehydes,2-4 sparing esters, and other functional groups prone to 
reduction, subsequent publications reported improved protocols for this 
transformation, including catalytic methods. Multiple groups extended the 
utility of the chemistry, including the formation of amines from acetamides, 
phenols from N,N-diethyl aryl O-carbamates, and the reductive cleavage 
reaction of heterocyclic carbamates. Many groups used the initially formed 
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reduced intermediates to add amines, carbon nucleophiles, and 
phosphonates. The intermediates were also employed in Ugi and 
Mannich/Michael tandem reactions. Many of the reaction products are 
complex structures that are otherwise difficult to prepare. 

 
In situ Generation of Cp2Zr(H)Cl 

 
Zhao and Snieckus reported in 2014 a practical method for the in situ 

generation of Cp2Zr(H)Cl (Schwartz’s reagent) from Cp2ZrCl2 and 

LiAlH(OtBu)3 to address the limitations associated with previously reported 
in situ protocols and the limited shelf-life of the commercial reagent 
(Scheme 1).5 In a comparative study against commercial Cp2Zr(H)Cl they 
showed that the in situ procedure proceeded with overall better reaction 
times and yields in the conversion of amides 1 to aldehydes 2. Representative 
examples 2a-2m demonstrate again the excellent chemoselectivity of this 
reaction. 
 

 
 
Scheme 1. Reduction of N,N-diethylamides to aldehydes using an in situ 

generated Schwartz reagent 
 

Catalytic Amide Reductions with the Schwartz Reagent 
 

To address the limited stability of the reagent, Donnelly et al. developed 
a catalytic version by using triethoxysilane ((EtO)3SiH) as a mild 
stoichiometric reductant (Scheme 2).6 This approach enables the efficient 
transformation of secondary amides 3 to imines 4 and tolerates a variety of 
functional groups. Under these conditions, 6-chloro-2-oxindole formed 
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deoxygenated 4k after tautomerization of the initially formed imine. 
Mechanistic studies suggest that the turnover of the active [Zr]-H species is 
achieved through the metathesis of the Si-H and Zr-OR σ-bonds. 

 

 
Scheme 2. Catalytic reduction of secondary amides with Schwartz’s 

reagent 
 

 

 
 

Scheme 3. Applications for the Cp2ZrCl2/DMMS catalytic system 
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In their 2023 study, Kehner et al. advanced another catalytic approach by 
employing the more stable Cp2ZrCl2 as a precursor for the zirconocene 
hydride catalyst, thereby circumventing the direct handling of the air- and 
moisture-sensitive Schwartz’s reagent (Scheme 3).7 Their method reduces 
secondary and tertiary amides using 5 mol% of Cp2ZrCl2 at room 
temperature. Dimethoxymethylsilane (DMMS) was utilized as a reductant in 
place of (EtO)3SiH, to avoid the formation of the pyrophoric and toxic 
byproduct SiH4. For secondary amides 5, this approach proved efficacious 
with aromatic amides, while the dialkyl amide N-benzylpentanamide gave a 
lower yield (41%). The chemistry was also applied to synthesizing indoles 8 
from 2-indolinones 7. Notably, tertiary amides 9 could be reduced to imines 
10 under these conditions through reductive transamination, adding an extra 
equivalent of a primary amine. In the case of aliphatic amide 12, the addition 
of secondary amines gave the corresponding enamines 13. 
 

Conversion of a-Substituted Amides to Aldehydes with no or Minimal 
Erosion of Stereochemistry 

 
In 2006, McGilvra et al. prepared b-hydroxy amides 14 employing a 

hydrogen bonding-catalyzed Mukaiyama aldol reaction.8 The authors then 
used Cp2Zr(H)Cl to convert amides 14 into aldehydes 15 with minimal 
erosion of the alpha stereocenter gained in the previous step. Key to the 
optimized conversion was the solvent change from THF to CH2Cl2 
(Scheme 4), which significantly increased the reaction rate and prevented 
isomerization. The reduced diastereomeric ratio (dr) was attributed to the 
iminium intermediate, which can isomerize to an enamine when the reaction 
rate is slow. 
 

Reductive Cleavage of Aryl O-Carbamates and Reductive Cleavage of 
Heterocyclic N-Carbamides 

 
In 2013, Morin et al. reported a mild reductive cleavage method for 

conversion of aryl O-carbamates 16 to phenols 17 using Schwartz’s reagent 
(Scheme 5).9 Substituted phenol O-carbamates containing halogens, electron-
withdrawing, and donating groups were studied. Reductive cleavages with 
the commercial and the in situ generated Cp2Zr(H)Cl were equally efficient. 
The authors extended the scope of this reductive cleavage reaction to 
heterocyclic carbamates 18, which provided moderate to good yields for 
cleavage products 19 (Scheme 6). 
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Scheme 4. Conversion of amides to aldehydes with Cp2Zr(H)Cl with 
minimal erosion of stereochemistry 

 
 

 
 

Scheme 5. Reductive cleavage of N,N-diethyl aryl O-carbamates to 
phenols using the in situ generated Schwartz reagent 

 
 

 
 

Scheme 6. Reductive cleavage of heterocyclic carbamides using the 
Schwartz reagent 

 
Chemoselective Conversion of Acetamides to Amines with Cp2Zr(H)Cl 

 
While our original report focused on generating aldehydes from amides, 
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acetamides 20 using the Schwartz reagent under mild conditions and with 
high chemoselectivity (Scheme 7).10 This strategy demonstrated that N-
deacetylation of aliphatic and heteroaromatic substrates is efficient and 
rapid, providing amines 21 in high yields from amide substrates with diverse 
electronic and steric properties. Epimerization was not observed during the 
synthesis of chiral amines 21e, 21f, and 21g.. Since Ts, Fmoc, Cbz, and Boc 
protection of amines was retained, this reductive procedure can be used in 
an orthogonal protection/deprotection strategy.  

 

 
 

Scheme 7. Deacetylation of N-acetamides by the Schwartz reagent 
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was explored by Ferrari et al. in 2015 with 12 examples, resulting in yields of 
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Scheme 8. Deacetylation of protected pyrimidines and purine nucleosides 
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successful for both purine and pyrimidine nucleoside analogs that had 
various protecting groups, such as OAc (23a, 23c, 23d, and 23e), OTBDMS, 
OTHP, OBoc (23b), OBz, O-trityl and O-isopropylidene groups (23d). This 
scope underscores the method's utility in the selective removal of N-acetyl 
groups in the production of nucleoside-based compounds. 

 
Nitrone Synthesis from N-Siloxyamides with the Schwartz Reagent 

 
Katahara et al. reported 2017 a reductive methodology for nitrone 

synthesis, commencing from N-siloxyamides 24 using Schwartz’s reagent. 
Subsequent acid addition yielded functionalized nitrones 25 (Scheme 9).12 
This reaction again exhibited the remarkable chemoselectivity in the presence 
of a diverse array of sensitive functional groups prone to reduction, such as 
esters, nitro groups, and olefins. The utility of this methodology was 
demonstrated in the synthesis and application of functionalized cyclic and 
macrocyclic nitrones, which were employed for the synthesis of bicyclic 
isoxazolidines 27, 29, and 31 (Scheme 10) through [3+2] cycloaddition 
reactions.  
 

 
Scheme 9. Reductive formation of nitrones from N-siloxyamides 

 
Reduction of Lactams with the Schwartz Reagent  

 
In 2011, Piperno et al. demonstrated the efficacy of the Schwartz reagent 

for reducing N-alkoxy carbonyl lactams 32, ranging from four to seven-
membered rings (Scheme 11).13 The selective reduction of g-lactam 32 (n = 1) 
to lactamol 33 marked a significant advancement in synthetic methodologies. 
d-Lactam 32 (n = 2) provided a 4:1 mixture of 33 and enamine 35. b-Lactam 
32 (n = 0) and e-lactam 32 (n = 3) yielded 1:1 mixture of lactamols 33 and 
aldehydes 34. 
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Scheme 10. Synthesis of bicyclic isoxazolidines from cyclic nitrones 

 

 
Scheme 11. Reduction of b, g, d, and e-lactams with the Schwartz reagent 

 
Reduction of Lactams with Cp2Zr(H)Cl Followed by the Addition of 

Amines and Reductive Amination 
 

In 2019, Prince et al. reported a novel and operationally simple protocol 
for coupling primary or secondary amines with N-aryl-substituted lactams to 
produce differentiated diamines with moderate to high yields (Schemes 12 
and 13).14 The process initially involves the reduction of lactams 36 using 
Schwartz's reagent followed by reductive amination of the aldehyde  
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Scheme 12. Aryl-substituted lactams and amines in the one-pot reductive 
coupling reaction 

 
intermediate with the amine nucleophiles to generate diamines 37. These 
steps can be combined into a one-pot reaction to streamline the procedure. 
The methodology's scope was demonstrated with different substituted 
lactams of various ring sizes to form the desired diamine products, yielding 
37a-37j and various primary and secondary amines 37k-37n. The utility of 
the reaction was validated by performing gram-scale syntheses. The 
methodology was extended to include N-aryl pyrrolidinones 38 with 
enantiopure ester groups, resulting in the formation of α-amino 
piperidinones 39a-39j with complete retention of stereochemistry 
(Scheme 13). The study highlights the utility of lactams as synthons for the 
synthesis of complex molecules and offers a practical approach to accessing 
diverse diamine structures. The proposed mechanistic pathway involves a 
zirconium complex as a masked aldehyde intermediate that, upon reductive 
amination, is followed by cyclization while retaining stereochemistry. This 
work opens new avenues for using lactams in organic synthesis and 
demonstrates the value of innovative reaction strategies for creating complex 
molecules. 
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Scheme 13. Reductive coupling/cyclization sequence of enantiopure N-

arylated pyrrolidinones 
 
Chemoselective Reductive Alkylation of Amides and N-Methoxy Amides 

to Form a-Substituted Amines 
 

Oda et al. reported in 2012 the direct allylation of amides 40 and 42 with 
allyltributylstannane, resulting in the formation of either substituted tertiary 
amines 41 or secondary amines 43 using Schwartz’s reagent (Scheme 14).15 
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electrophilicity of amides, was avoided. This method facilitates the direct 
functionalization of amide groups without additional functional group 
support. This reaction displayed significant tolerance towards various 
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Scheme 14. Reductive allylation of tertiary and secondary amides with 
allyltributylstannane 

 
and other sensitive groups. Tertiary amides formed allylated tertiary amines 
41a-41h, and secondary amides formed allylated secondary amines 43a-43f. 
In 2014, Nakajima et al. extended the direct allylation chemistry to tertiary 
amides 44 to form tertiary a-allyl amines 45 (Scheme 15).16 Having 
established chemoselective reductive nucleophilic addition to tertiary 
amides, their focus shifted to secondary amides 46, which after reaction with 
allylzinc bromide yielded secondary amines 47a-47g. In this report,16 they 
further extended their work to N-methoxy amides 48, significantly 
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Scheme 15. Reductive allylation of tertiary and secondary amides with 
allyltributylstannane and allylzinc bromide 

 
 

 
 

Scheme 16. Reductive allylation of N-methoxy amides with 
allyltributylstannane 
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outcomes compared to tertiary and secondary amides in both yield and 
chemoselectivity when utilizing a catalytic amount of Sc(OTf)3 for the 
synthesis of 49a-49h (Scheme 16). The reaction allowed them to use different 
nucleophiles, such as indole, enol ethers, TMSCN, and tributyl(propa-1,2-
dien-1-yl)stannane, while maintaining the high chemoselectivity for both 
tertiary amides 50 to generate amines 51a-51g and N-methoxy amides 52 to 
generate N-methoxy amines 53a-53g (Scheme 17). 
 

 
 

Scheme 17. Reductive addition of carbon nucleophiles to tert-amides and 
tert-N-methoxamides 
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addition occurred syn to the BnO substituent at the C3 position for six-
membered imines. In contrast, steric effects controlled the nucleophile 
addition for five-membered imines, leading to an anti-arrangement of the 
BnO at C3 and the allyl group at C2. Further exploration included testing 
other nucleophiles, TMSCN (55b and 55h), PhMgBr (55c and 55i), and the 
TMS-enol ether of acetophenone (55d and 55j) yielding cyclic amines in 
moderate to good yields and selectivities.17 This versatile protocol was 
applied to g-lactam 56 to synthesize two pyrrolidine derivatives, 6-deoxy-
DMDP (57) and radicamine B (58).17 Overall, this method enables direct 
nucleophile addition to in situ generated cyclic imines, offering opportunities 
for synthesizing various polyhydroxylated pyrrolidines and piperidines, 
valuable in natural product synthesis and biosynthetic pathways. 
 

Scheme 18. One-pot reduction of sugar-derived lactams with Schwartz’s 
reagent followed by nucleophilic addition of carbon nucleophiles 
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isocyanide 59. The method was efficient for synthesizing 5-methoxyoxazoles 
such as 58a-58b from tertiary amides with various alkyl groups. The reaction 
was also extended to heteroaromatic amides, yielding the corresponding 
oxazoles such as 58d. The authors also investigated secondary lactams, 
discovering that 2.2 equiv of Schwartz’s reagent were needed in the reaction 
with isocyanoacetates to produce oxazoles such as 58i. The reaction of 
isocyanoacetates with 2-pyrrolidines gave separable diastereomeric mixtures 
of bicyclic imidazolines 60a-60e in excellent yields. However, six-membered 
lactams provided low yields of compounds such as 60f. 
 

 
Scheme 19. One-pot reductive nucleophilic addition of methyl-2-

isocyanoacetates 59 
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formation of 2,3-disubstituted indoles 62. The reaction with nucleophiles 
such as allyl tributyl stannane (62a-62b), acetophenone enol TMS ethers (62c-
62d), and indole (62e-62f) provided the desired products in good yields. One 
equivalent of the thiophenol is sufficient to form 62g-62h and to avoid over-
reduction. An activating group such as TMSOTf is required for dimethyl 
malonates to provide the desired indoles 62i-62j in good to excellent yields.  
This method holds promise for synthesizing indole derivatives with 
pharmacological and synthetic relevance. 

 

 
Scheme 20. Synthesis of indoles from oxindoles 
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Scheme 21. Directed functionalization of fluoroacetic acid-derived amides 
 

 
 

Scheme 22. Synthesis of trifluoromethyl bioisosteres of antiarrhythmic 
procainamide and prokinetic itopride 
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from iminosugars, after which LiCH2P(O)(OEt)2 and LiCF2P(O)(OEt)2 were 
added to produce glycosyl phosphonates 72. The yield of this reaction, which 
was as high a 64%, is influenced by the configuration and the protecting 
groups present in the sugar lactams, and the reaction proceeds with notable 
stereoselectivity. The iminosugars synthesized via this method exhibit 
promising characteristics as transition state inhibitors of glycosyltransferases. 
Their potential arises from the more stable P-C bond, offering an advantage 
over the naturally occurring, more hydrolysable P-O bond. 

 
Scheme 23. Reductive alkylative synthesis of 1-C-phosphonomethyl and 
1-C-difluoromethyl iminosugars from sugar-derived lactams using the 

Schwartz reagent 
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containing diphenyl, diisopropyl, dimethyl, and acetal groups were used to 
this reductive phosphination reaction to furnish analogs such as 74e and 74f. 
The reactivity of the dialkyl phosphonates remained largely unaffected by 
the specific alkyl moieties. 

 
Scheme 24. Transformation of secondary and tertiary amides into 

a-amino phosphonates 
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to a Joullié-Ugi reaction by adding TFA and isocyanide. This process 
proceeds smoothly with aliphatic (tBu, Cy) and aromatic (PMP) isocyanides, 
providing products 78 with up to 95:5 dr. This approach facilitates not only 
the synthesis of proline amides but also pipecolic acid amides in a one-pot 
method, enhancing the overall scope of this synthetic method. 

In 2014, Szcześniak et al. introduced a direct and efficient method for 
synthesizing quinolizidine such as 80a and 80b and indolizidine such as 80c 
and 80d from iminosugars 79 (Scheme 26).24 This innovative approach 
involves a one-pot reduction of sugar-derived lactams 79 using Schwartz’s 
reagent, followed by a diastereoselective Mannich/Michael tandem reaction 
with Danishefsky’s diene. Initially, lactams are treated with Cp2Zr(H)Cl 
(1.6 equiv) in THF, forming the corresponding imine. The resulting imine is 
then subjected to cyclocondensation with the diene and Yb(OTf)3 within the 
same reaction vessel. This process provided good yields (51-81%) of bicyclic 
enaminones 80 and good to high diastereoselectivities of up to 98:2 dr, 
making this method a valuable tool for efficiently synthesizing these complex 
natural product scaffolds. 

 
 

Scheme 26. Synthesis of indolizidines and quinolizidines via one-pot 
reduction/Mannich/Michael tandem reaction 
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