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Procedure (Note 1) 

 
Benzophenone (3). An oven-dried 100-mL (Note 2), single neck (24/29 

joint), round-bottomed flask equipped with a 2.5 x 1.0 cm Teflon-coated 
magnetic stir bar is charged with 1,1-diphenylethene (1) (3.61 g, 20.0 mmol, 
1.0 equiv) (Note 3) and 4-nitrobenzonitrile (2) (6.52 g, 44.0 mmol, 2.2 equiv) 
(Note 4). The flask is purged with nitrogen for 15 min (Figure 1A). After 
purging, the outlet needle is removed, 16.5 mL of anhydrous acetonitrile 
(Note 5) is added via syringe with a 21-G needle (120 mm). A N2-filled 
double-skinned balloon is connected to the flask via needle and the reaction 
is allowed to stir (1000 rpm), yielding a pale-yellow solution. Four 390 nm 
Kessil LED lamps (three PR160L-390nm and one PR160-390nm) are placed 3 
cm from all four sides of the flask. A strong flow of nitrogen through an 
inverted funnel directed at the reaction flask was used to maintain an 
ambient temperature of approximately 30 °C (Note 6, Figures 1B and 1C). 
After continuously stirring (670 rpm) for 20 min to ensure thorough mixing, 
the LED lamps and strong flow of N2 are turned on, initiating the reaction. 
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A cardboard box is used to cover the reaction. The temperature increased to 
35 °C over the course of the reaction. 

After 36 h, the reaction mixture is dark orange in color (Figure 1D). An 
aliquot is taken, diluted in ethyl acetate (1 mL) (Note 7) in a 2-dram vial and 
the reaction is deemed to be complete by TLC analysis (Note 8). The reaction 
mixture is concentrated using a rotary evaporator (40 °C, 10 mbar) (Figure 
1e). 
 

 
Figure 1. A. Starting materials (1 and 2) under N2; B. Starting materials (1 
and 2) after addition of CH3CN; C. Reaction flask is irradiated with four 
390 nm LED lamps; D. Reaction mixture after 36 h; E. Solvent is removed 
by rotary evaporator (Photo A was provided the checkers and Photos B-E 

were provided by the authors) 
 

Next, the mixture is dissolved in dichloromethane (50 mL) (Note 9), 
silica gel (8 g) is added, and the solvent is removed under reduced pressure 
using a rotary evaporator (40 °C, 10 mbar) to yield an orange powder (Figure 
2A). The dry powder is directly loaded onto a 150 g silica gel column (8 cm x 
12 cm) (Figure 2B). Sand is carefully added to the top of the column. The flash 
column is eluted with a gradient of 500 mL 100% hexanes, 6 L 0.3% ethyl 
acetate/hexanes (Note 10). The first 3 L of eluent from the column is collected 
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in an Erlenmeyer flask before fraction collection begins. The ketone product 
(3) elutes in fractions 33-130 (Note 11) as determined by TLC analysis on silica 
gel with 5% ethyl acetate/hexanes (254 nm UV visualization) (Note 12). 

The fractions containing product (3) are transferred to a 1-L round-
bottomed flask and concentrated under reduced pressure using a rotary 
evaporator (40 °C, 10 mbar). The flask is then connected to a Schlenk line and 
dried under high vacuum (25 °C, 1 mm Hg) to afford 2.63 g of benzophenone 
(3) (72% yield, 99.8% purity determined by qNMR analysis) as a pale-yellow 
oil (Figure 2C, Note 13). A second run afforded 2.62 g of benzophenone (3) 
(72% yield, 98.6% purity determined by qNMR analysis) as a pale-yellow oil. 

 

 
Figure 2. A. Crude reaction mixture concentrated onto 8 g of silica gel; 

B. Purification by column chromatography; C. Isolated benzophenone 
product 3 (Photo A was provided by the checkers and Photos B-C were 

provided by the authors) 
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Notes 
 
1. Prior to performing each reaction, a thorough hazard analysis and risk 

assessment should be carried out with regard to each chemical substance 
and experimental operation on the scale planned and in the context of the 
laboratory where the procedures will be carried out. Guidelines for 
carrying out risk assessments and for analyzing the hazards associated 
with chemicals can be found in references such as Chapter 4 of “Prudent 
Practices in the Laboratory" (The National Academies Press, Washington, 
D.C., 2011; the full text can be accessed free of charge at 
https://www.nap.edu/catalog/12654/prudent-practices-in-the-
laboratory-handling-and-management-of-chemical. See also 
“Identifying and Evaluating Hazards in Research Laboratories” 
(American Chemical Society, 2015) which is available via the associated 
website “Hazard Assessment in Research Laboratories” at 
https://www.acs.org/about/governance/committees/chemical-
safety.html. In the case of this procedure, the risk assessment should 
include (but not necessarily be limited to) an evaluation of the potential 
hazards associated with Benzophenone, 4-Nitrobenzonitrile, 1,1-
Diphenylethene, Acetonitrile, Ethyl Acetate, DCM, Hexanes, CDCl3. 

2. All reactions were conducted in oven-dried glassware under an 
atmosphere of nitrogen. 

3. 1,1-Diphenylethylene (98.0%) was purchased from Fluorochem Ltd and 
used as received. 

4. 4-Nitrobenzonitrile (97.0%) was purchased from Fluorochem Ltd and 
used as received. 

5. Acetonitrile (99.9%) extra dry over molecular sieve, AcroSeal® was 
purchased from Thermo Scientific and used as received. 

6. In contrast to the checkers, the authors utilized fans to help maintain 
ambient temperature.   

7. Ethyl acetate (99.7%) was purchased from Sigma-Aldrich and used as 
received. 

8. The sample was dissolved in ethyl acetate in a 2-dram vial and checked 
for conversion using TLC with starting material and product standards. 
TLC analysis showed that the starting material was completely 
consumed.  
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Figure 3. TLC after 36 h showing crude (left), 4-nitrobenzonitrile (2, 

center), and Benzophenone (3, right) (5% ethyl acetate/hexanes) (Photos 
provided by the checkers) 

 
9. Dichloromethane (99.8%) was purchased from Sigma-Aldrich and used 

as received. 
10. Hexanes (97.0%) was purchased from Sigma-Aldrich and used as 

received. 
11. The size of the test tube is 16 mm x 150 mm, with each fraction having a 

volume of 20 mL. 
12. TLC analysis of the column is shown below. The TLC plates were eluted 

with 5% ethyl acetate/hexanes and visualized using 254 nm UV light.  
 

 
Figure 4. TLC analysis of column fractions (Photos provided by the 

checkers) 
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13. Benzophenone (3) is characterized as follows: pale yellow oil; 1H NMR 
(400 MHz, CDCl3) (δ, ppm): 7.83-7.79 (m, 4H), 7.62-7.57 (m, 2H), 7.51-7.46 
(m, 4H). 13C NMR (101 MHz, CDCl3) (δ, ppm): 196.9, 137.8, 132.6, 130.2, 
128.4. IR (film cm-1): 3061, 2919, 2850, 2360, 2341, 1658. [M + H]+ calc’d for 
C13H10O: 183.0804.  Found: 183.0808. The purity of 3 was determined to 
be 98.6% by qNMR using trimethoxybenzene as an internal standard.  

 
Working with Hazardous Chemicals 
 

The procedures in Organic Syntheses are intended for use only by persons 
with proper training in experimental organic chemistry.  All hazardous 
materials should be handled using the standard procedures for work with 
chemicals described in references such as "Prudent Practices in the 
Laboratory" (The National Academies Press, Washington, D.C., 2011; the full 
text can be accessed free of charge at 
http://www.nap.edu/catalog.php?record_id=12654).  All chemical waste 
should be disposed of in accordance with local regulations.  For general 
guidelines for the management of chemical waste, see Chapter 8 of Prudent 
Practices.  

In some articles in Organic Syntheses, chemical-specific hazards are 
highlighted in red “Caution Notes” within a procedure.  It is important to 
recognize that the absence of a caution note does not imply that no significant 
hazards are associated with the chemicals involved in that procedure.  Prior 
to performing a reaction, a thorough risk assessment should be carried out 
that includes a review of the potential hazards associated with each chemical 
and experimental operation on the scale that is planned for the procedure.  
Guidelines for carrying out a risk assessment and for analyzing the hazards 
associated with chemicals can be found in Chapter 4 of Prudent Practices. 

The procedures described in Organic Syntheses are provided as published 
and are conducted at one's own risk.  Organic Syntheses, Inc., its Editors, and 
its Board of Directors do not warrant or guarantee the safety of individuals 
using these procedures and hereby disclaim any liability for any injuries or 
damages claimed to have resulted from or related in any way to the 
procedures herein. 
 
Discussion 
 



 

 Org. Synth. 2025, 102, 114–127      DOI: 10.15227/orgsyn.102.0114 120 

Ozonolysis of alkenes remains a primary means of obtaining key 
carbonyl functional groups found in natural products and drug candidates. 
The earliest ozone reaction can be traced back to 1840 when Schönbein 
discovered ozone,2 and he successfully published the first article on ozone-
induced oxidative cleavage in 1846.3,4 As ozone cleavage reactions became 
more widespread, it was gradually realized that they pose several potential 
risks. Firstly, the highly reactive nature and toxicity of ozone may pose a 
danger to operators in laboratory and industrial environments. Secondly, the 
excessive generation of ozone can lead to side reactions and impurities in the 
products.5,6 Lastly, ozone is not suitable for oxidatively sensitive compounds, 
leading to limited substrate scope for conventional ozonolysis reactions. 

In recent years, the application of transition metals in catalyzing the 
cleavage of alkenes has become more widespread. SanMartin and co-workers 
conducted a detailed analysis and discussion of various transition metals for 
catalyzing the cleavage of alkenes.7 Kroutil's team, in addition to studying 
common transition metals, also included a discussion on biocatalysis using 
manganese-containing enzymes, that demonstrated activity towards styrene 
derivatives, utilizing tert-butyl hydroperoxide as an oxidant in the presence 
of molecular oxygen.8 

However, most transition metal methods suffer from drawbacks such as 
the use of precious metals, narrow applicability range, and the generation of 
toxic waste.9,10 Enzymatic catalysis also faces challenges such as enzyme 
specificity, slow reaction rates, and high costs.11 

Owing to the recent advances in photochemical applications, 
photocatalytic oxidation reactions have become a major area of focus. In 2021, 
Xiao and colleagues reported a visible-light-induced manganese-catalyzed 
cleavage reaction of alkenes.12 Many similar photocatalytic alkene cleavage 
reactions have been successfully developed.13 While practical, the terminal 
oxidant in these systems is often supplied by oxygen, giving a tendency for 
overoxidation, leading to limitations in substrate scope. Therefore, there is a 
need for more stable oxidants to efficiently oxidize alkenes under anaerobic 
conditions. 
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Table 1. Selected substrate scope. Isolated yields are reported. 
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In this work, we employed stable, electron deficient nitroarenes as the 

oxygen atom source for the cleavage of alkenes under anaerobic conditions 
and 390 nm light irradiation (Table 1).14 The reaction exhibits broad 
applicability and is operationally simple. Oxidatively sensitive groups (Table 
1, 3g-h) can be tolerated under this protocol, illustrating complementary to 
existing oxidative cleavage methods. Notably, this reaction is performed 
under mild and practical conditions without the hazards that are associated 
with mainstream ozonolysis. 
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Appendix 
Chemical Abstracts Nomenclature (Registry Number) 

 
1,1-Diphenylethene; (530-48-3) 
4-Nitrobenzonitrile; (619-72-7) 

 Benzophenone; (119-61-9)  
1,3,5-Trimethoxybenzene; (621-23-8) 
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