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Procedure (Note 1) 
 
S-Trifluoromethyl Trifluoromethanesulfonothioate (TTST, 1). To a flame 

dried, 500-mL, 3-necked, round-bottomed flask, is added fine powdered 
sodium trifluoromethanesulfinate (2) (50.0 g, 320 mmol, 3 equiv) of high 
purity (Notes 2, 4). To completely dry the trifluoromethanesulfinate, the flask 
is evacuated for 1 hour in an oil bath at 80 °C using a vacuum pump (2.6 Torr), 
then filled with argon and cooled down (Note 5). After that, the center neck 
of the flask is fitted with an overhead stirrer (a mechanical stirrer), another 
neck is fitted with a 25-mL dropping funnel connected with a CaCl2-drying 
tube, and the last neck is fitted with a thermometer to monitor the internal 
temperature of the reaction mixture (Figure 1A). Dry chlorobenzene (188 mL) 
(Note 6) is added into the flask via the dropping funnel using 100-mL syringe 
and triflic anhydride (3) (Note 7) (Tf2O, Tf = CF3SO2) (25.1 mL, 149 mmol, 1.4 
equiv (Note 8)) is added into the dropping funnel using 30-mL syringe. The 
flask is heated in an oil bath at 70 °C (oil bath temperature) and then triflic 
anhydride is added dropwise to the flask over a period of 50 minutes with 
stirring at 136-220 rpm (see the stirring blade in the 500-mL flask in Figure 
1A). The temperature inside the flask is kept around 75 °C (Note 9). As the 
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reaction proceeds, the reaction mixture becomes viscous since sodium triflate 
is formed (Note 10). After the complete addition of triflic anhydride, the 
reaction mixture is stirred for an additional 1 hour in the oil bath at 70 °C (oil 
bath temperature). Finally, the reaction mixture is very viscous (Figure 1B). 
Next, the dropping funnel is replaced with a distillation set fitted with a 
distillation column (Note 11), a condenser (Note 12), and a receiver (Note 13) 
(Figure 1C). The flask is then gradually heated in the oil bath up to around 
170 °C (oil bath temperature) to collect the distillate until bp 90 °C (20.52-20.61 
g; crude yield 81-82% based on CF3SO2Na used) (Note 14). The byproduct, 
sodium triflate (TfONa), can easily be isolated in almost quantitative yield by 
the filtration of the reaction mixture left behind. 
 

 
Figure 1. A. An apparatus of the reaction in which sodium 

trifluoromethanesulfinate is placed in the 500 mL flask; B. The viscous 
reaction mixture after the reaction, in which a lot of sodium triflate is 

formed; C. Distillation of crude TTST from the reaction mixture (Photo A 
and B were provided by the authors and photo C was provided by 

checkers) 
 
The obtained crude product is purified by fractional distillation using a 

distillation column (height 20 cm) filled with glass beads (3 mm diameter) 
(Figure 2A) to give 15.21-16.42 g (bp 62-67 °C, 61-66% yield) of TTST 1 whose 
purity is 85-86% by qNMR (Notes 15, 16). The main impurity is 
chlorobenzene. To obtain TTST of higher purity, the second fractional 
distillation is conducted using the same apparatus, giving 12.38-12.73 g (bp 
62-64 °C, 50-51% yield) of TTST whose purity is 95% by qNMR (Note 17). 
TTST is colorless liquid (Figure 2B) and has high thermal stability because it 
was isolated from the reaction mixture heated up to 170 °C (Note 18 and 19). 
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Figure 2. A. Fractional distillation for purification of crude TTST; B. 

TTST after purification (Photo A was provided by checkers and photo B 
was provided by the authors) 

 
 
Notes 

 
1. Prior to performing each reaction, a thorough hazard analysis and risk 

assessment should be carried out with regards to each chemical 
substance and experimental operation on the scale planned and in the 
context of the laboratory where the procedures will be carried out. 
Guidelines for carrying out risk assessments and for analyzing the 
hazards associated with chemicals can be found in references such as 
Chapter 4 of “Prudent Practices in the Laboratory" (The National 
Academies Press, Washington, D.C., 2011; the full text can be accessed 
free of charge at https://www.nap.edu/catalog/12654/prudent-practices-
in-the-laboratory-handling-and-management-of-chemical. See also 
“Identifying and Evaluating Hazards in Research Laboratories” 
(American Chemical Society, 2015) which is available via the associated 
website “Hazard Assessment in Research Laboratories” at 
https://www.acs.org/about/governance/committees/chemical-
safety.html. In the case of this procedure, the risk assessment should 
include (but not necessarily be limited to) an evaluation of the potential 

about:blank
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hazards associated with sodium trifluoromethanesulfinate, 
trifluoromethanesulfonic anhydride and chlorobenzene. There is no 
reported data on the toxicity of the product TTST. A well-ventilated hood 
should be used for the entire procedure. 

2. Sodium trifluoromethanesulfinate (95% purity) was purchased from 
BLD pharm and purified by the following way: 100 grams of sodium 
trifluoromethanesulfinate was added in 333 mL of ethyl acetate (Note 3) 
in a 1 L, 3-necked, round-bottomed flask and the mixture was stirred at 
room temperature (26 °C) for one hour. The suspension was filtered 
through a thick Celite bed on a Buchner funnel. To avoid breakage of the 
Celite bed, first it was rinsed with 50 mL of ethyl acetate. The mixture 
was filtered through the Celite bed and washed with additional 100 mL 
of ethyl acetate. The combined ethyl acetate solution was transferred to a 
recovery flask and the solvent was evaporated using a rotary evaporator 
at 30 °C under the 43 torr vacuum. The resulting residue was dried at 80 
°C for three days under the 2.6 torr vacuum. After that, the flask was 
moved into a glove box and the residue was taken out of the flask and 
quickly ground with a mortar and returned to the flask and then further 
dried at 50 °C for two days under the 2.6 torr vacuum. Again, it was 
ground to make fine powder in a glove box ready for the reaction step. 
Furthermore, to completely remove moisture, the reagent was added into 
a 300 mL, 1-necked, round-bottomed flask equipped with phosphorus 
pentoxide as a drying agent and stirred at 80 °C under 20.3 torr vacuum 
for 6 hours (Figure 3).    
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Figure 3. An apparatus of the drying process in which sodium 

trifluoromethanesulfinate is placed in the 300 mL flask. (The photo was 
provided by checkers) 

 
3. Ethyl acetate, Super Dehydrated (99.5+% purity) was purchased from 

FUJIFILM Wako Pure Chemical Corporation and used as received. 
4. When fine powered sodium trifluoromethanesulfinate of high purity is 

available, it can be used directly for the reaction without the purification 
and grinding processes. 

5. Sodium trifluoromethanesulfinate is hygroscopic. If dry, fine powdered 
sodium trifluoromethanesulfinate is put into the flask under completely 
dry conditions like in a glove box, the drying process in a flask in vacuum 
is not needed.  

6. Chlorobenzene purchased from Oakwood Chemicals was distilled at 
atmospheric pressure (the first fraction was removed) and kept on 3Å 
molecular sieves. 

7. Triflic anhydride (3) (purity >99%) was purchased from Oakwood 
Chemicals and used without further purification. 

8. Although the theoretical amount of triflic anhydride (3) was 1.0 equiv, 
1.4 equiv amounts of 3 were used, because some of sodium 
trifluoromethanesulfinate (2) left unreacted when less amounts of 3 (<1.4 
equiv) were used, while some of 3 left unreacted when more amounts of 
3 (>1.4 equiv) were used. 
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9. Since the reaction is exothermic, it is necessary to control the reaction 
temperature not to go higher than about 80 °C.  

10. Due to the high viscosity of the reaction mixture, it is needed to use a 
mechanical stirrer. 

11. A Snyder distillation column (total height 35 cm) was used. See Figure 
1C. 

12. Chilled water using an ice bath was flowed through the condenser. 
13. The receiver, a 20 mL, 1-necked, recovery flask was cooled in an ice bath. 
14. The distillation should be carefully conducted in a fume hood. A small 

amount of CF3SSCF3 was detected in the first part of the distillate from 
the crude product by 19F NMR. It was reported that CF3SSCF3 (b.p. 34.6 
°C) is toxic (LC50 200 ppm/min from W. A. Sheppard, C. M. Sharts, 
Organic Fluorine Chemistry, p. 452, Benjamin, 1969). 

15. The purity (86%) of TTST (M.W. 234.13) was determined by quantitative 
19F NMR analysis of 43.2 mg of the distilled product in CDCl3 solvent 
using 58.8 mg (purity 98%, 0.326 mmol) of 4-chlorobenzotrifluoride 
(M.W. 180.55) as an internal reference. The NMR integration ratio of 
TTST/the reference was 0.50. The calculation was shown in qNMR file. 
The main impurity was chlorobenzene. 

16. The authors used this TTST, obtained by the first fractional distillation, 
for the trifluoromethylthiolations mentioned in the Discussion Section 
below. 

17. The purity (95%) of TTST (MW 234.13) was determined by quantitative 
19F NMR analysis of 40.3 mg of the distilled product in CDCl3 solvent 
using 55.8 mg (purity 98%, 0.309 mmol) of 4-chlorobenzotrifluoride 
(M.W. 180.55) as an internal reference. The NMR integration ratio of 
TTST/the reference was 0.54. The calculation was shown in qNMR file. 
The main impurity was chlorobenzene. 

18. No obvious decomposition of TTST was observed (<1%) after heating in 
toluene-d8 at 130 °C for 15 h. 

19. TTST: 19F NMR (376 MHz, CDCl3) δ –36.58 (quartet, J = 5.2 Hz, 3F), –77.25 
(quartet, J = 5.2 Hz, 3F); 13C NMR (150 MHz, CDCl3) δ 126.1 (quartet, J = 
316.7 Hz), 119.2 (quartet, J = 328.1 Hz). 

 
Working with Hazardous Chemicals 

 
The procedures in Organic Syntheses are intended for use only by persons 

with proper training in experimental organic chemistry.  All hazardous 
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materials should be handled using the standard procedures for work with 
chemicals described in references such as “Prudent Practices in the 
Laboratory” (The National Academies Press, Washington, D.C., 2011; the full 
text can be accessed free of charge at 
https://nap.nationalacademies.org/catalog/12654/prudent-practices-in-
the-laboratory-handling-and-management-of-chemical).  All chemical waste 
should be disposed of in accordance with local regulations.  For general 
guidelines for the management of chemical waste, see Chapter 8 of Prudent 
Practices.  

In some articles in Organic Syntheses, chemical-specific hazards are 
highlighted in red “Caution Notes” within a procedure.  It is important to 
recognize that the absence of a caution note does not imply that no significant 
hazards are associated with the chemicals involved in that procedure.  Prior 
to performing a reaction, a thorough risk assessment should be carried out 
that includes a review of the potential hazards associated with each chemical 
and experimental operation on the scale that is planned for the procedure.  
Guidelines for carrying out a risk assessment and for analyzing the hazards 
associated with chemicals can be found in Chapter 4 of Prudent Practices. 
The procedures described in Organic Syntheses are provided as published and 
are conducted at one’s own risk.  Organic Syntheses, Inc., its Editors, and its 
Board of Directors do not warrant or guarantee the safety of individuals using 
these procedures and hereby disclaim any liability for any injuries or 
damages claimed to have resulted from or related in any way to the 
procedures herein. 
 
Discussion 

 
Fluorine-containing compounds have been attracting much attention 

across various fields such as pharmaceuticals, agrochemicals, and materials 
science owing to their unique properties.2 Among the fluorinated functional 
groups, the trifluoromethythio group (CF3S) is gaining increasing interest 
due to its highest lipophilicity in addition to the high electronegativity.3  

The ideal method for the preparation of CF3S compounds is the direct 
substitution of C-H sites with electrophilic reactions. Early electrophilic 
trifluoromethylthiolating reagents were CF3SSCF3

4 and CF3SCl,5 which were 
toxic gases. Easy-to-handle second generation electrophilic 
trifluoromethythiolating reagents I – XIII have been developed by many 
chemists as shown in Figure 4. Although these advancements have led to 
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safer, more manageable CF3S reagents, challenges related to reliance on 
expensive or hazardous precursors, multistep synthesis processes, narrow 
applications, or low-atom economy remain. 

 

 
Figure 4. Easy-to-handle electrophilic trifluoromethylthiolating agents 

 
We have recently reported the thermally stable, easy-to-handle, and 

highly versatile and atom-economical CF3S reagent, S-trifluoromethyl 
trifluoromethanesulfonothioate (TTST 1), which can be prepared by a one-
step from easily available, inexpensive CF3SO2Na 2 (Langlois reagent) and 
triflic anhydride 3 (Eq. 1).19 The detailed procedure of the preparation of 1 is 
described in this paper. The reaction mechanism proposed is shown in 
Scheme 1.19 
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Scheme 1. Proposed reaction mechanism for the preparation of TTST 

 
As mentioned below, TTST is a powerful electrophilic CF3S+ reagent. In 

addition, TTST can provide two equimolar nucleophilic CF3S- anions species 
and both CF3S• and CF3• radical species depending on the reaction conditions. 
Thus, TTST is highly versatile and atom-economical.  

 

 
Scheme 2. Trifluoromethylthiolations of electron-rich (hetero)aromatics, 

carbanions, and olefins with TTST (right side) and preparation of 
reported electrophilic CF3S reagents with TTST (left) 
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As shown in Scheme 2 (right side),20 TTST reacted with electron-rich 
(hetero)aromatic compounds under mild conditions to give 
trifluoromethylthiolated compounds 5a-c in high yields. Active methylene 
compounds such as keto esters, diketones, and malonates were reacted with 
TTST under basic condition to give CF3S products 5d-f in high yields. Alkenes 
such as styrene reacted with TTST in the presence of LiBr to afford bromo-
trifluoromethylthiolated products 5g-i in high yields.  

As shown in Scheme 2 (left side), many reported electrophilic 
trifluoromethylthiolating reagents could be prepared in high yields by a one-
step using TTST.19 Thus, Munavali’s reagent II was prepared in 76% yield 
from sodium phthalimide. Billard’s reagent III was prepared in 83% yield 
from the aniline derivative. Shen and Zhao’s reagent IV was prepared in 85% 
yield from the alcohol derivative. Shen’s reagent VI was prepared in 71% 
yield from sodium salt of Saccharin. Billard’s reagent VII was prepared in 
95% yield from the corresponding sulfonamide derivative. These indicated 
the higher reactivity of TTST than the reported electrophilic CF3S reagents. 
Their original preparative methods required a toxic gas (CF3SCl), an 
expensive reagent such as AgSCF3, or potentially explosive Et2NSF3 (DAST).  

Due to its high reactivity towards heteroatom sites, TTST facilitated the 
easy formation of the almost unknown ArOSCF3 7 by reacting with the 
corresponding phenoxides, resulting in high yields of products (Scheme 3).19 
Furthermore, in the presence of a catalytic amount of triflic acid, ArOSCF3 
underwent a new type of Fries-type rearrangement, with the para isomer 
being the major products 8 (Scheme 3).19 
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Scheme 3. Preparation of ArOSCF3 and their acid-catalyzed CF3SII-

rearrangement 
 

In addition to the electrophilic reactions of TTST, we showcased TTST's 
high atom efficiency and versatility as a nucleophilic CF3S reagent.19 This was 
exemplified by employing tetrakis(dimethylamino)ethylene (TDAE) and 
copper powder as electron donors in the presence of PPh3, resulting in the 
production of two equivalent nucleophilic CF3S anion species 9 and 10 and 
the eventual substitution of halogens with nucleophilic SCF3 in substrates 
such as benzyl bromide, 2,4-dinitrochlorobenzene and p-iodonitrobenzene, 
achieving excellent yields of the CF3S products 11a,b and 12 (Scheme 4).19 
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Scheme 4. Nucleophilic reactions using TTST as two CF3S anions source 

 
We also demonstrated the high atom efficiency of TTST by introducing 

CF₃ and SCF₃ groups to alkenes simultaneously under mild, metal-free 
conditions, facilitated by the photochemical activity of Mes-Acr⁺-Me ClO₄.19 
This high atom economy ensures that most atoms from the TTST are 
incorporated into the difunctionalized products, minimizing waste. Previous 
reports indicated that such processes required both CF₃S and CF₃ reagents21,22 
or transition metal catalysis in the presence of an oxidizer (K2S2O8) and a 
ligand (PPh3).23 Our method can be adapted for various alkenes, achieving 
excellent yields without extra additives (Scheme 5). 
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Scheme 5. Photocatalytic radical trifluoromethyl-
trifluoromethylthiolation of alkenes with TTST 

 
Electrophilic trifluoromethylthiolation of electron-rich aromatic 

compounds such as indoles and other strongly electron-donating group(s)-
substituted aromatics have been reported with many electrophilic 
trifluoromethylthiolating agents. However, non-activated and deactivated 
aromatics were very hard to be trifluoromethylthiolated with the 
conventional electrophilic reagents including TTST. Just recently, using TTST, 
we have developed easy-to-handle 1-methyl-4-
(trifluoromethylthio)piperazine (MTTP, 15) as a highly useful electrophilic 
trifluoromethylthiolating agent for non- and deactivated aromatics.24 MTTP 
was synthesized in high yield in one step from the reaction of N-
methylpiperazine (16) with TTST (Scheme 6).  

 

 
Scheme 6. Synthesis of MTTP and its reactive species A and B with TfOH 
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Surprisingly, we found that MTTP provided two kinds of reactive species 
A and B with two and three equivalent amounts of triflic acid (TfOH), 
respectively (Scheme 6). Species A is a potent CF3S+ reagent which can react 
with electron-rich aromatics in high yields, while B is an unprecedentedly 
powerful CF3S+ reagent that made possible the challenging electrophilic 
trifluoromethylthiolation of electron-deficient aromatic system, as illustrated 
in Scheme 7.24  

 

 
Scheme 7. Trifluoromethylthiolations of aromatics with reactive species A 

and B 
 
In addition, the highly powerful species B made possible the uncommon 

trifluoromethylthiolation of active methylene compounds under acidic 
conditions, typified in Eq. 2.24  
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powerful CF3S+ reagent, MTTP, which, in combination with TfOH, has made 
possible the hard-to-do trifluoromethylthiolation of electron-deficient 
aromatics. Hence, TTST is expected to be an attractive and practical reagent 
for the preparation of various CF3S-containing compounds useful for 
medicines, agrochemicals, and others.  
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Appendix 

 Chemical Abstracts Nomenclature (Registry Number) 
 

 Sodium trifluoromethanesulfinate (2926-29-6) 
Trifluoromethanesulfonic anhydride (358-23-6) 

Chlorobenzene (108-90-7) 
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