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In some articles in Organic Syntheses, chemical-specific hazards are highlighted in red 
“Caution Notes” within a procedure.  It is important to recognize that the absence of a 
caution note does not imply that no significant hazards are associated with the chemicals 
involved in that procedure.  Prior to performing a reaction, a thorough risk assessment 
should be carried out that includes a review of the potential hazards associated with each 
chemical and experimental operation on the scale that is planned for the procedure.  
Guidelines for carrying out a risk assessment and for analyzing the hazards associated 
with chemicals can be found in Chapter 4 of Prudent Practices. 

The procedures described in Organic Syntheses are provided as published and are 
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hereby disclaim any liability for any injuries or damages claimed to have resulted from or 
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1. Procedure 

 

1,3-Diphenyl-2-(1-phenylethyl)propane-1,3-dione. An oven-dried, 

300-mL, three-necked, round-bottomed flask equipped with a nitrogen inlet 

adapter, a rubber septum, a stopcock and a Teflon-coated magnetic stir bar is 

cooled to room temperature under a flow of nitrogen. While temporarily 

removing the septum, the flask is charged with gold(III) chloride (AuCl3) 

(0.303 g, 1 mmol, 5 mol% Au) and silver trifluoromethanesulfonate 

(AgOTf) ( 0.77 g, 3 mmol, 15 mol%) (Note 1) under N2. Dichloromethane 

(150 mL) (Note 2) is added, and the catalyst mixture is stirred at room 

temperature for 1.5–2 h, resulting in a brown suspension (Note 3). 

Dibenzoylmethane (4.48 g, 20 mmol) (Note 4) is added to the reaction flask 

over 2 min while temporarily removing the septum and the color of the 

reaction mixture turns green. Styrene (3.45 mL, 30 mmol) (Notes 5, 6) is 

diluted to 25 mL with CH2Cl2 and added dropwise to the reaction mixture by 

syringe pump through the septum over 6–7 h at room temperature (Note 7). 

The mixture is then stirred for another 30 min (Note 8). A deep-green 

solution is obtained (Note 9). The solution is filtered through approximately 

40 mL of silica gel in a 60-mL glass Büchner filter funnel to remove the 

catalyst (Note 10).  The silica gel is washed with ether (6 x 50 mL), and the 

filtrate is concentrated by rotary evaporation at room temperature. The 

residue, a clear, orange-brown oil, is then purified by flash column 

chromatography (Note 11) to provide the crude product as a pale yellow 

solid (6.44 g, 98 %) (Note 12). Further purification is achieved by 

recrystallization.  The crude product is dissolved in 30 mL of hot EtOAc, 

and diluted with 90 mL of hexanes to the point of cloudiness.  The mixture 
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is allowed to cool slowly to room temperature overnight, and the resulting 

solids are collected by filtration, rinsing with 10 mL of hexanes.  The solids 

are air-dried, then placed in a vacuum oven for 4 h to provide analytically 

pure product as a white solid (4.16 g, 12.7 mmol, 63%) (Notes 13, 14).   

 

2. Notes 

 

1. Gold(III) chloride (99.99%+) and silver 

trifluoromethanesulfonate (99%+) were purchased from the Aldrich 

Chemical Company and used as received. 

2. Dichloromethane was purchased from J. T. Baker (HPLC grade) 

and used as received.  The submitters distilled their dichloromethane from 

CaH2. 

3. Silver trifluoromethanesulfonate was stirred with gold chloride in 

dichloromethane, which results in a brown (in some cases orange) 

precipitate (the clear solution was almost colorless). The clear solution had 

no catalytic activity.  

4. Dibenzoylmethane (98%) was purchased from the Aldrich 

Chemical Company and used as received. 

5. Styrene (99%, inhibited with 10–15 ppm 4-tert-butylcatechol) 

was purchased from the Aldrich Chemical Company and used as received. 

6. The main side reaction was the dimerization of styrene, resulting 

in the formation of 1,3-diphenyl-but-1-ene as the by-product. In order to 

increase the yield of the major product, excess styrene had to be used. When 

enlarging the scale of the reaction, the dimerization of styrene became more 

serious. Therefore, in this case, 1.5 to 2 equiv. of styrene was required.  

7. A competition exists between the addition of dibenzoylmethane 

to styrene and the dimerization of styrene, therefore introduction of styrene 

in one portion or too quickly resulted in a decreased yield.  

8.  The submitters stirred the reaction for an additional 4 h.  The 

checkers found that a post-addition stir time ranging from 30 min to 16 h 

had no impact on product yield or quality. 

9. The product was detected by TLC (hexanes/EtOAc = 10/1). Rf 

(dimer of styrene): 0.91; Rf (diketone): 0.49; Rf (product): 0.29. 

10. Length: 3.5 cm diameter  4 cm. If the catalyst was not removed 

before evaporation, the product tended to decompose to the diketone and the 

dimer of styrene. In a control experiment, when the catalyst was not 
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removed before evaporation (bath temperature of the rotary evaporator: 50 

°C), a lower yield was obtained (4.14 g, 63% yield before recrystallization). 

11.  The oil was diluted with 50 mL of CH2Cl2, and 13 g of SiO2 

(Baker, 40 μm, flash chromatography grade) was added.  The resulting 

slurry was concentrated on the rotary evaporator to a tan powder, which was 

charged to the top of a column prepared from flash silica gel slurried in 2% 

EtOAc-hexanes (column dimensions 3.5 cm diameter x 18 cm height).  

Elution with 2% EtOAc-hexanes (1.5 L, removed unreacted 

dibenzoylmethane) followed by 10% EtOAc-hexanes (6 L) afforded the 

product in fractions 19-74 (75 mL fractions were collected).  The product-

containing fractions were combined and concentrated to provide the crude 

product.   

12. The product at this stage was probably suitable for most 

subsequent applications (ca. 90% purity), but two impurities were observed 

by 
1
H NMR and LC/MS and the product failed elemental analysis.  LC/MS 

showed the impurities to be present at ca. 5% each.  The impurities appeared 

to be the two regioisomers (each a mixture of two diastereomers) generated 

from the addition of dibenzoylmethane to the styrene dimer 

((PhCO)2CHCH(Ph)CH2CH(Ph)Me and (PhCO)2CHCH(CH2Ph)CH-

(Ph)Me): C31H28O2 requires m/z 432, M+Na = 455 observed. 

13. The submitters recrystallized a sample from 10:1 hexanes-

CH2Cl2 for elemental analysis and melting point.   

14. IR (thin film): max 3062, 3028, 2968, 1693, 1662, 1595, 1579, 

1494, 1447, 1321, 1264, 1215, 1194, 1180, 979, 907, 756, 732, 686 cm
-1

; 
1
H 

NMR (CDCl3, 400 MHz) : 1.34 (d, J = 7.0 Hz, 3 H), 4.07 (dq, J = 10.0, 7.0 

Hz, 1 H), 5.60 (d, J = 10.0 Hz, 1 H), 7.05–7.57 (m, 11 H), 7.73 (d, J = 7.5 

Hz, 2 H), 8.03 (d, J = 7.5 Hz, 2 H); 
13

C NMR (CDCl3, 100 MHz) : 20.1, 

41.1, 64.4, 126.5, 127.6, 128.3, 128.3, 128.6, 128.7, 132.9, 133.4, 136.7, 

137.0, 143.6, 194.5, 194.8. mp 123–124 °C (lit. 126–127 °C).
2
 Anal. Calcd 

for C23H20O2: C, 84.12; H, 6.14; Found: C, 84.10; H, 6.06. 

 

Safety and Waste Disposal Information 

 

 All hazardous materials should be handled and disposed of in 

accordance with “Prudent Practices in the Laboratory”; National Academy 

Press; Washington, DC, 1995. 

 

 



  225 

3. Discussion 

 

As one of the most common methodologies for the formation of 

carbon-carbon bonds, the alkylation of 1,3-dicarbonyl compounds usually 

requires the use of a stoichiometric amount of base and an organic halide. 

An alternative reaction via transition metal-catalyzed addition of 1,3-

dicarbonyl compounds to alkenes would provide a more atom-economical 

approach and has attracted much interest in recent years. 

Recently, Widenhoefer and co-workers reported an elegant 

intramolecular hydroalkylation of alkenes by carbonyl compounds catalyzed 

by palladium.
3
 Compared with intramolecular addition, intermolecular 

hydroalkylations of alkenes involving such activated methylene C-H bonds 

were rarely reported. Widenhoefer reported a platinum- or palladium-

catalyzed intermolecular addition of ethylene with -diketones.
4
 Hartwig 

also reported a palladium-catalyzed addition of mono- and dicarbonyl 

compounds to conjugated dienes.
5
  

 Using the addition of 2,4-pentanedione to styrene as a prototype, we 

found:
6
 (1) AgOTf or AuCl3 provided only trace amounts of the desired 

product, (2) the combination of AuCl3 and AgOTf provided the desired 

product in good yields, (3) changing the counter ion of the silver salt from 

OTf lowered the yield, but no difference was observed when the counter ion 

of gold was changed, and (4) CH2Cl2 was the solvent of choice relative to 

DCE and nitromethane. It should be noted that since the catalytic system is 

very strongly Lewis acidic, THF was not stable in the solution of the 

gold/silver catalyst. THF decomposed almost immediately, and a semi-solid 

was obtained in the tube.  

A side reaction observed in this system was the polymerization of 

styrene, in which the dimerization promoted by metal triflate species was 

found to be the main reaction and gave 1,3-diphenyl-but-1-ene as the main 

by-product.
7
 Since styrene readily dimerized in the reaction, the use of 

catalytic AuCl3/AgOTf in CH2Cl2 with an excess of styrene, which was 

diluted and slowly added to the reaction, provided the best yield. It should be 

mentioned that dimerization became more serious with an increase in the 

reaction scale, especially for the less reactive 1,3-diketone substrates, such 

as 2,4-pentandione. In these cases, increasing the excess of styrene and 

reaction temperature was beneficial. Alternatively, use of a more diluted 

solution and slower addition helped to inhibit the dimerization of styrene. 

The results of various 1,3-diketones and styrenes are summarized in Table 1. 
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 Since gold(III) chloride is expensive, decreasing the amount of 

catalyst was also attempted. For the less active diketones, such as 2,4-

pentandione, reduction of the amount of gold(III) resulted in a decrease in 

yield. However, for the procedure described above, there was only ca. 3% 

decrease in yield.  

This reaction was reversible at higher temperatures when catalyzed by 

gold or silver catalyst.
8
 Dibenzoylmethane derivatives were most prone to 

the reverse reaction, which gave the diketone and the styrene dimer. In small 

scale reactions (1 mmol or less), the reversibility was not a serious problem, 

since it was not necessary to remove CH2Cl2 before separation. However, for 

larger scale reactions, the catalyst had to be removed by a short silica gel 

column before concentration, especially for the dibenzoylmethane 

derivatives (although it was not necessary for the 2,4-pentanedione 

derivatives). 

Under the same reaction conditions, various cyclic dienes and cyclic 

enol ethers were reacted with dibenzoylmethane and 1-benzoylacetone 

(Table 2).
9
 Addition to a triene (entry 2) was also selective in the generation 

of a diene product. The reaction had to be carried out at low temperature in 

some cases in order to prevent polymerization or dimerization of the diene 

(entries 3 and 4). The use of cyclic alkenes bearing a heteroatom (entries 5-

8) resulted in selective product formation. However, addition of 

dibenzoylmethane to an ether-substituted DHP (entries 6 and 7) led to a 

significant amount of bis-alkylation products. The use of simple cyclic and 

acyclic alkenes led to very low conversions, while use of acyclic conjugated 

dienes resulted in the formation of a complicated unidentified mixture. The 

use of sterically hindered dienes or less activated methylenes (such as 2,4-

pentadione and cyclic diketones) also led to low conversions under the 

present conditions. 
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Table 1 Addition of -Diketone to Alkenes Catalyzed by Gold Catalyst
a
 

Entry Diketone Alkenesb Product Yield (%)c

OO

OO

MeO

Cl

Cl

OO

MeO

OO

OO

Cl

OO

Cl

O
O

1

2

3

4

5e

6

89d

94

62

97

50

44

O
O

Cl

OO

7

8

OO

Cl

70

(1:1)f

55

(1:1)f

OO

OO

OO

OO

OO

O
O
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Table 1 (continued)  

Entry Diketone Alkenesb Product Yield (%)c

9

10

11

12

13

14

89

(1:1)f

67 

(1:1)f

98

91

39g

81

OO

Cl

Cl

Cl

Cl

OO

Cl

OO

Cl

O

O

Cl

O

O

Cl

O

O

O

O

Ph

Ph

H

OO

OO

Ph Ph

OO

Ph Ph

OO

Ph Ph

OO

Ph Ph

 
a
 Reaction conditions: 1 mmol scale in dichloromethane. 

b 
The alkenes (1.5 equiv., diluted to 

3 mL) were added by syringe pump over 5 h. 
c
 Isolated yield. 

d
 This reaction was also carried 

out on a 30 mmol scale (2 equiv. of styrene was used), and 70–74% yields were achieved. 
e 

The reaction was carried out in refluxing nitromethane. 
f
 The ratio of two diastereomers was 

determined by 
1
H-NMR.          

g
 Approximately 56% of the diketone was recovered. 
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Table 2 Addition of -diketone to cyclic alkenes catalyzed by gold catalyst
a
 

 

Entry Diketone Alkenesb Product Yield (%)c

1

2d

3e

4e

5e

6

65

42

51

50

68

47

OO

Ph Ph

O

O

OO

Ph Ph

OO

Ph Ph

OO

Ph Ph

OO

Ph Ph

O

O

Ph

Ph

O

O

O

Ph

Ph

O

O

O

Ph

Ph

O Ph

Ph O

O

+

15

O
O

O

Ph

Ph

O

O

O

Ph

Ph

O Ph

Ph O

O

+

7

MeO

EtO
EtO

MeO

44 15

OO

Ph Ph

OO

Ph Ph

OO

Ph Ph

OO

Ph Ph

OO

Ph Ph

OO

Ph Ph
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Table 2 (continued) 

Entry Diketone Alkenesb Product Yield (%)c

8

9

10

58

38

(1.4:1)f

35

(1.2:1)f

OO

Ph Ph

OO

Ph Me

OO

Ph Me

O

O

O

O

Ph

Me

O

O

Ph

Me

O

O

O

Ph

Ph

O

 
a
 Reactions were performed in dry dichloromethane. 

b
 Alkenes were added by syringe 

pump. 
c
 Isolated yield. 

d
 The position of the double bonds was confirmed by COSY-

NMR. 
e
 Reactions were run at 0 

o
C. 

f
 The ratio of the two diastereoisomers was 

determined by 
1
H NMR. 
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Appendix 

Chemical Abstracts Nomenclature; (Registry Number) 

 

Dibenzoylmethane: 1,3-Propanedione, 1,3-diphenyl-: (120-46-7) 

Styrene: Benzene, ethenyl-: (100-42-5)  

Gold(III) chloride; (13453-07-1) 

Silver trifluoromethanesulfonate: Methanesulfonic acid, trifluoro-, silver(1+) 

salt; (2923-28-6) 

1,3-Diphenyl-2-(1-phenylethyl)propane-1,3-dione: 1,3-Propanedione, 1,3-

diphenyl-2-(1-phenylethyl)-;  (116140-58-0) 
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