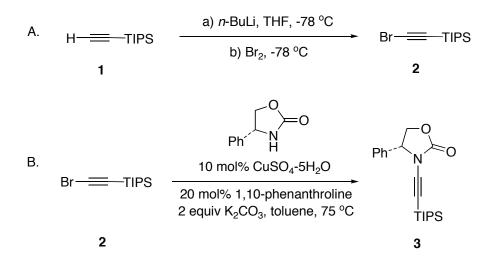


A Publication of Reliable Methods for the Preparation of Organic Compounds

Working with Hazardous Chemicals

The procedures in Organic Syntheses are intended for use only by persons with proper training in experimental organic chemistry. All hazardous materials should be handled using the standard procedures for work with chemicals described in references such as "Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 2011; the full accessed text can be free of charge at http://www.nap.edu/catalog.php?record_id=12654). All chemical waste should be disposed of in accordance with local regulations. For general guidelines for the management of chemical waste, see Chapter 8 of Prudent Practices.

In some articles in *Organic Syntheses*, chemical-specific hazards are highlighted in red "Caution Notes" within a procedure. It is important to recognize that the absence of a caution note does not imply that no significant hazards are associated with the chemicals involved in that procedure. Prior to performing a reaction, a thorough risk assessment should be carried out that includes a review of the potential hazards associated with each chemical and experimental operation on the scale that is planned for the procedure. Guidelines for carrying out a risk assessment and for analyzing the hazards associated with chemicals can be found in Chapter 4 of Prudent Practices.


The procedures described in *Organic Syntheses* are provided as published and are conducted at one's own risk. *Organic Syntheses, Inc.,* its Editors, and its Board of Directors do not warrant or guarantee the safety of individuals using these procedures and hereby disclaim any liability for any injuries or damages claimed to have resulted from or related in any way to the procedures herein.

September 2014: The paragraphs above replace the section "Handling and Disposal of Hazardous Chemicals" in the originally published version of this article. The statements above do not supersede any specific hazard caution notes and safety instructions included in the procedure.

Copyright © 2007 Organic Syntheses, Inc. All Rights Reserved

Organic Syntheses, Vol. 84, p. 359-367 (2007); Coll. Vol. 11, p. 677-683 (2009).

PRACTICAL SYNTHESIS OF A CHIRAL YNAMIDE: (R)-4-PHENYL-3-(2-TRIISOPROPYLSILYL-ETHYNYL)OXAZOLIDIN-2-ONE [2-Oxazolidinone, 4-Phenyl-3-(2-triisopropylsilyl-ethynyl)-, (4R)-]

Submitted by I. K. Sagamanova, K. C. M. Kurtz, and R. P. Hsung.¹ Checked by Karen M. Marcantonio and David J. Mathre.

1. Procedures

A. 1-Bromo-2-triisopropylsilyl-ethyne (2). To a flame-dried singlenecked 1-L round-bottomed flask equipped with a magnetic stir bar is added a solution of triisopropylsilylacetylene (22.0 g, 120.6 mmol) (Note 1) in anhydrous THF (500 mL) (Note 2). The solution is cooled to -78 °C, and *n*-BuLi (50.7 mL, 126.7 mmol, 1.05 equiv) (Note 3) is added by syringe through the septum. The reaction is stirred for 30 min at -78 °C, and Br₂ (6.80 mL, 132.7 mmol, 1.10 equiv) (Note 4) is added slowly through the septum using a syringe. The reddish brown color from Br₂ disappears as it is consumed upon addition. The solution remains reddish brown when the addition is complete. The mixture is stirred for 15 min at -78 °C and then quenched by addition of saturated aqueous $Na_2S_2O_3$ (150 mL) after removal of the septum. The reaction mixture is transferred to a separatory funnel and the layers separated. The aqueous layer is further extracted with methyl tertbutyl ether (MTBE) $(3 \times 50 \text{ mL})$, and the combined organic extracts are washed with saturated aqueous NaCl (50 mL), dried over Na₂SO₄, filtered and concentrated on a rotary evaporator (20 - 30 mmHg, 50 °C) to yield the

crude alkynyl bromide **2** (30.22–30.24 g, 96%) as a pale yellow oil (Note 5). Alkynyl bromide **2** is used without further purification (Note 6).

B. (R)-4-Phenyl-3-(2-triisopropylsilyl-ethynyl)oxazolidin-2-one (3). To a solution of 1-bromo-2-triisopropylsilylacetylene (2) (28.19 g, 107.9 mmol) (Note 7) in freshly distilled anhydrous toluene (100 mL) (Note 2) in a 250-mL, single-necked, round-bottomed flask fitted with a magnet stir bar are added *R*-phenyloxazolidinone (17.60 g, 107.9 mmol, 1.00 equiv) (Note 8), K₂CO₃ (29.81 g, 215.7 mmol, 2.00 equiv) (Note 9), CuSO₄•5H₂O (2.69 g, 10.8 mmol, 0.10 equiv) (Note 10), and 1,10-phenanthroline (3.89 g, 21.6 mmol, 0.20 equiv) (Note 11). The flask is fitted with a reflux condenser topped with a septum and N₂ inlet, and heated in an oil bath at 75 °C (bath temperature) for 48 h. The reaction is monitored using TLC analysis (Note 12). Upon completion, the reaction mixture is cooled to room temperature and filtered through a 200-mL coarse-fritted vacuum filtration funnel containing a 5-cm layer of silica gel covered with a 1-cm layer of Celite. The mixture is washed through with 50% EtOAc/hexanes (400 mL), and the filtrate is concentrated on a rotary evaporator (20 - 30 mmHg, 70 °C). The crude residue is purified using silica gel column flash chromatography (Note 13) to give ynamide **3** (29.5–32.7 g, 81–88%) (Notes 14 and 15) as a yellow oil.

2. Notes

1. Triisopropylacetylene (97%) was purchased from GFS Chemicals.

2. Anhydrous solvents were obtained from an MBraun solvent purification system. Unstabilized THF was purchased from JT Baker, and toluene was purchased from Aldrich.

3. *N*-Butyllithium (2.5 *M* solution in hexanes) was purchased from Aldrich Chemical Co.

4. Bromine (99+%) was purchased from Fisher Scientific.

5. Characterization of **2**: $R_f = 0.72$ [25% EtOAc in hexanes]; yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 1.06–1.10 (m, 21 H); ¹³C NMR (75 MHz, CDCl₃) δ 11.2, 18.4, 61.6, 83.4.

6. This purification step was not necessary, because, in most cases, high purity was obtained judging from ¹H NMR. However, product **2** was stable to silica gel column flash chromatography and could be eluted with

hexanes. Other alkynyl bromides may require silica gel column flash chromatography for purification.

7. The amidation reaction was performed successfully on a variety of scales [see Discussion section].

8. *R*-Phenyloxazolidinone (98%) was purchased from Aldrich and used as received.

9. Potassium carbonate (98%; \sim 325 mesh powder) was purchased from Aldrich.

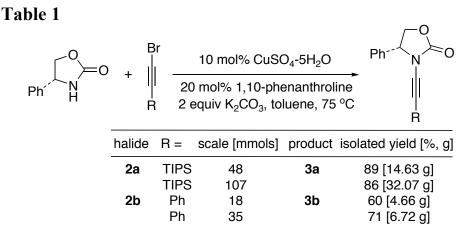
10. $CuSO_4 \bullet 5H_2O$ (99.3%) was purchased from J. T. Baker. The solid was ground into a powder with a mortar and pestle before use.

11. 1,10-Phenanthroline (99+%) was purchased from Aldrich. The solid was ground into a powder with a mortar and pestle before use.

12. TLC analysis (25% EtOAc/hexanes): R_f (oxazolidinone) = 0.03, R_f (**2**) = 0.72, R_f (**3**) = 0.39.

13. The crude product was dissolved in 200 mL of CH_2Cl_2 in a round-bottomed-flask, and 75 g silica gel was added to the flask. The CH_2Cl_2 was removed on a rotary evaporator (20–30 mmHg, 35 °C) equipped with a bump trap. The dried contents of the flask were loaded onto the column (size $l \times d = 30$ cm \times 5 cm) containing a slurry of silica gel and hexanes layered with sand. Gradient elution [EtOAc in hexanes]: 800 mL 0%, 800 mL 2%, 1000 mL 5%, 1500 mL 7%, 2000 mL 10%.

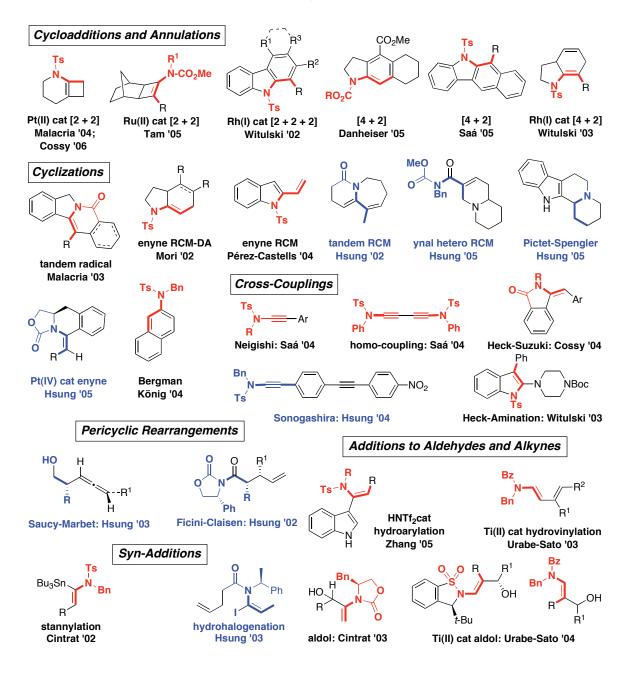
14. GC analysis of ynamide **3** shows its purity to be \geq 98.0%.


15. Characterization of **3**: $R_f = 0.39$ [25% EtOAc in hexanes]; clear oil; $[\alpha]_D^{23} - 133.7$ (c 1.21, CH₂Cl₂); Chiralcel OD-H (250 x 4.6 mm), 5% IPA/heptane, 1.0 mL/min, 215 nm, t_R (*R*) 10.77 min, t_R (*S*) 13.66 min: >99.5 % ee R. ¹H NMR (500 MHz, CDCl₃) δ : 0.90–0.93 (m, 21 H), 4.28 (dd, 1 H, J = 7.6, 8.8 Hz), 4.73 (t, 1 H, J = 8.8 Hz), 5.06 (dd, 1 H, J = 7.6, 8.8 Hz), 7.34–7.45 (m, 5 H);¹³C NMR (75 MHz, CDCl₃) δ : 11.0, 18.3, 62.2, 70.4, 71.9, 91.8, 127.1, 129.1, 129.4, 135.7, 155.2; IR (thin film) cm⁻¹ 2943 (m), 2185 (w), 1782 (s), 1394 (m), 883 (m); mass spectrum (APCI): m/z (% relative intensity) 344 (13) (M + H)⁺, 334 (33), 318 (100); m/z calcd for C₂₀H₂₉NO₂Si 344.2040, found 344.2047

Safety and Waste Disposal Information

All hazardous materials should be handled and disposed of in accordance with "Prudent Practices in the Laboratory"; National Academy Press; Washington, DC, 1995.

3. Discussion


It is noteworthy that this cooper-catalyzed amidation of alkynyl bromide can be carried out with scales ranging from 48 to 107 mmol. The respective ynamide products were isolated with yields ranging from 86–89%.

The level of purity of the ynamides prepared using this procedure can be unambiguously established using GC/HPLC analysis for ynamide **3**. The level of optical purity of the product is dependent upon the optical purity of the chiral auxiliaries acquired from commercial sources. The $[\alpha]_D^{20}$ value for the commercial (*R*)-2-phenyloxazolidinone used in this preparation was -52.3 [c 2.0, CHCl₃]. The $[\alpha]_D^{20}$ values reported by Aldrich for (*R*)-2phenyloxazolidinone and (*S*)-2-phenyloxazolidinone are -48.0 [c 2.0, CHCl₃], which indicates that the *ee* or optical integrity of the Evans' auxiliary used for this work was very high. Severe erosion of the auxiliary's *ee* is unlikely under the amidation conditions described herein. The anticipated high *ee* of chiral ynamide (*R*)-**3** was confirmed by chiral HPLC.

Ynamides²⁻⁹ have become a highly attractive building block for developing synthetic methodologies.¹⁰⁻¹¹ As illustrated in Figure 1, there have been at least 30 reports in the last few years describing dozens of different strategies employing ynamides. Particularly attractive are those in

which the nitrogen atom of ynamides becomes an integral part of various products that possess potential in alkaloid synthesis. These efforts demonstrate that there can be a distinct advantage in utilizing ynamides over simple alkynes. Therefore, the key issue, in part being addressed in this *Organic Syntheses* procedure, is their preparation. We, as well as others, have exerted much effort toward this goal.³⁻⁹

- School of Pharmacy, University of Wisconsin, 777 Highland Ave., Madison, Wisconsin 53705-2222 USA.
- 2. For reviews on ynamides, see: (a) Zificsak, C. A.; Mulder, J. A.; Hsung,

R. P.; Rameshkumar, C.; Wei, L.-L. *Tetrahedron* **2001**, *57*, 7575. (b) Zhang, Y.; Hsung, R. P. *ChemTracts* **2004**, *17*, 442. (c) Katritzky, A. R.; Jiang, R.; Singh, S. K. *Heterocycles* **2004**, *63*, 1455.

- For reviews on the synthesis of ynamides, see: (a) Tracey, M. R.; Hsung, R. P.; Antoline, J.; Kurtz, K. C. M.; Shen, L.; Slafer, B. W.; Zhang, Y., in *Science of Synthesis, Houben-Weyl Methods of Molecular Transformations*, Steve M. Weinreb, Ed. Georg Thieme Verlag KG: Chapter 21.4, 2005. (b) Mulder, J. A.; Kurtz, K. C. M.; Hsung, R. P. *Synlett* 2003, 1379.
- 4. For the first preparations of ynamides, see: Janousek, Z.; Collard, J.; Viehe, H. G. Angew. Chem., Int. Ed. 1972, 11, 917.
- For some examples of alkynyl iodonium triflate salts, see: (a) Feldman, K. S.; Bruendl, M. M.; Schildknegt, K.; Bohnstedt, A. C. J. Org. Chem. 1996, 61, 5440. (b) Witulski, B.; Stengel, T. Angew. Chem. Int. Ed. 1998, 37, 489. (c) Witulski, B.; Stengel, T.; Fernàndez-Hernàndez, J. M. Chem. Commun. 2000, 1965. (d) Witulski, B.; Buschmann, N.; Bergsträßer, U. Tetrahedron 2000, 56, 8473. (e) Rainier, J. D.; Imbriglio, J. E. J. Org. Chem. 2000, 65, 7272. (f) Brückner, D. Synlett 2000,1402. (g) Fromont, C.; Masson, S. Tetrahedron 1999, 55, 5405.
- For the synthesis of ynamides using copper catalyzed amidations, see:
 (a) Frederick, M. O.; Mulder, J. A.; Tracey, M. R.; Hsung, R. P.; Huang, J.; Kurtz, K. C. M.; Shen, L.; Douglas, C. J. J. Am. Chem. Soc. 2003, 125, 2368. (b) Zhang, Y.; Hsung R. P.; Tracey, M. R.; Kurtz, K. C. M.; Vera, E. L. Org. Lett. 2004, 6, 1151.
- 7. Also see: (a) Dunetz, J. R.; Danheiser, R. L. Org. Lett. 2003, 5, 4011.
 (b) Hirano, S.; Tanaka, R.; Urabe, H.; Sato, F. Org. Lett. 2004, 6, 727.
 (c) Riddell, N.; Villeneuve, K.; Tam, W. Org. Lett. 2005, 7, 3681.
- For the synthesis of ynamides using an based promoted elimination Zbeta-bromo enamides, see: Wei, L.-L.; Mulder, J. A.; Xiong, H.; Zificsak, C. A.; Douglas, C. J.; Hsung, R. P. *Tetrahedron* 2001, *57*, 459.
- 9. Also see: Couty, S.; Barbazanges, M.; Meyer, C.; Cossy, J. Synlett 2005, 906.
- 10. For an impressive array of reports on the chemistry of ynamides just in the last three years, see: (a) For a special issue dedicated to the chemistry of ynamides, see: *Tetrahedron-Symposium-In-Print:* "Chemistry of Electron-Deficient Ynamines and Ynamides." *Tetrahedron* 2006, 62, Issue No.16. (b) Tanaka, K.; Takeishi, K.;

Noguchi, K. J. Am. Chem. Soc. 2006, 128, 4586. (c) Couty, S.; Meyer, C.; Cossy, J. Angew. Chem. Int. Ed. 2006, 45, 6726. (d) Dunetz, J. R.; Danheiser, R. L. J. Am. Chem. Soc. 2005, 127, 5776. (e) Zhang, Y. Tetrahedron Lett. 2005, 46, 6483. (f) Riddell, N.; Villeneuve, K.; Tam, W. Org. Lett. 2005, 7, 3681. (g) Martinez-Esperon, M. F.; Rodriguez, D.; Castedo, L.; Saá, C. Org. Lett. 2005, 7, 2213. (h) Bendikov, M.; Duong, H. M.; Bolanos, E.; Wudl, F. Org. Lett. 2005, 7, 783. (i) Marion, F.; Coulomb, J.; Courillon, C.; Fensterbank, L.; Malacria, M. Org. Lett. 2004, 6, 1509. (j) Rosillo, M.; Domínguez, G.; Casarrubios, L.; Amador, U.; Pérez-Castells, J. J. Org. Chem. 2004, 69, 2084. (k) Couty, S.; Liégault, B.; Meyer, C.; Cossy, J. Org. Lett. 2004, 6, 2511. (1) Rodríguez, D.; Castedo, L.; Saá, C. Svnlett 2004, 783. (m) Rodríguez, D.; Castedo, L.; Saá, C. Synlett 2004, 377. (n) Hirano, S.; Tanaka, R.; Urabe, H.; Sato, F. Org. Lett. 2004, 6, 727. (o) Klein, M.; König, B. Tetrahedron 2004, 60, 1087. (p) Marion, F.; Courillon, C.; Malacria, M. Org. Lett. 2003, 5, 5095. (g) Witulski, B.; Alayrac, C.; Tevzaadze-Saeftel, L. Angew. Chem., Int. Ed. 2003, 42, 4257. (r) Tanaka, R.; Hirano, S.; Urabe, H.; Sato, F. Org. Lett. 2003, 5, 67. (s) Witulski, B.; Lumtscher, J.; Bergsträber, U. Synlett 2003, 708. (t) Naud, S.; Cintrat, J.-C. Synthesis 2003, 1391. (u) Witulski, B.; Alayrac, C. Angew. Chem. Int. Ed. 2002, 41, 3281. (v) Saito, N.; Sato, Y.; Mori, M. Org. Lett. 2002, 4, 803. (w) Timbart, J.-C.; Cintrat. J.-C. Chem. Eur. J. 2002, 8, 1637. (x) For many other contributions before 2001. see references 2 and 3.

 For our own recent applications of ynamides, see: (a) Zhang, X.; Li, H.; You, L.; Tang, Y.; Hsung, R. P. *Chem. Commun.* 2007, *ASAP*. (b) Oppenheimer, J.; Johnson, W. L.; Tracey, M. R.; Hsung, R. P.; Yao, P.-Y.; Liu, R.; Zhao, K. *Org. Lett.* 2007, *9*, *ASAP*. (c) You, L.; Al-Rashid, Z. F.; Figueroa, R.; Ghosh, S. K.; Li, G.; Lu, T.; Hsung, R. P. *Synlett* 2007, *in press*. (d) Tracey, M. R.; Oppenheimer, J.; Hsung, R. P. *J. Org. Chem.* 2006, *71*, 8629. (e) Zhang, X.; Li, H.; You, L.; Tang, Y.; Hsung, R. P. *Adv. Syn. Cat.* 2006, *348*, 2437. (f) Zhang, X.; Hsung, R. P.; You, L. *Organic Biomol. Chem.* 2006, *6*, 2679. (g) Zhang, X.; Zhang, Y.; Huang, J.; Hsung, R. P.; Kurtz, K. C. M.; Oppenheimer, J.; Petersen, M. E.; Sagamanova, I. K.; Tracey, M. R. *J. Org. Chem.* 2006, *71*, 4170. (h) Kurtz, K. C. M.; Frederick, M. O.; Lambeth, R. H.; Mulder, J. A.; Tracey, M. R.; Hsung, R. P. *Tetrahedron* 2006, *62*, 3928. (i) Kurtz, K. C. M.; Hsung, R. P.; Zhang, Y. *Organic Lett.* 2006, *8*, 231. (j) Zhang, Y.; Hsung, R. P.; Zhang, X.; Huang, J.; Slafer, B. W.; Davis, A.; Org. Lett. 2005, 7, 1047. (k) Tracey, M. R.; Zhang, Y.; Frederick, M. O.; Mulder, J. A.; Hsung, R. P. Org. Lett. 2004, 6, 2209. (l) Shen, L.; Hsung, R. P. Tetrahedron Lett. 2003, 44, 9353. (m) Frederick, M. O.; Hsung, R. P.; Lambeth, R. H.; Mulder, J. A.; Tracey, M. R. Org. Lett. 2003, 5, 2663. (n) Mulder, J. A.; Kurtz, K. C. M.; Hsung, R. P.; Coverdale, H. A.; Frederick, M. O.; Shen, L.; Zificsak, C. A. Org. Lett. 2003, 5, 1547. (o) Huang, J.; Xiong, H.; Hsung, R. P.; Rameshkumar. C.; Mulder, J. A.; Grebe, T. P. Org. Lett. 2002, 4, 2417. (p) Mulder, J. A.; Hsung, R. P.; Frederick, M. O.; Tracey, M. R.; Zificsak, C. A. Org. Lett. 2.; Hsung, R. P.; Frederick, M. O.; Tracey, M. R.; Zificsak, C. A. Org. Lett. 2.; Hsung, R. P.; Frederick, M. O.; Tracey, M. R.; Zificsak, C. A. Org. Lett. 2.; Hsung, R. P.; Frederick, M. O.; Tracey, M. R.; Zificsak, C. A. Org. Lett. 2.; Hsung, R. P.; Frederick, M. O.; Tracey, M. R.; Zificsak, C. A. Org. Lett. 2.; Hsung, R. P.; Frederick, M. O.; Tracey, M. R.; Zificsak, C. A. Org. Lett. 2002, 4, 1383.

Appendix Chemical Abstracts Nomenclature; (Registry Number)

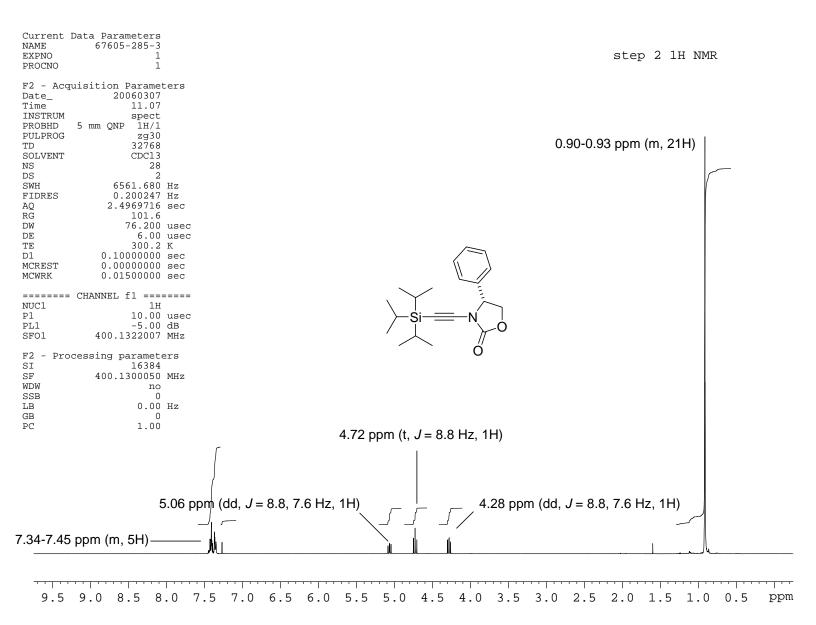
n-Butyllithium: Butyllithium; (109-72-8)
Triisopropylsilylacetylene: Silane, ethynyltris(1-methylethyl)-; (89343-06-6)
Copper sulfate pentahydrate; (7758-99-8)
1-Bromo-2-triisopropylsilyl-ethyne: Silane, (bromoethynyl)tris(1-methylethyl)-; (111409-79-1) *R*-Phenyloxazolidinone: (4*R*)-4-Phenyl-2-Oxazolidinone; (90319-52-1)

1,10-Phenanthroline; (66-71-7)

Richard P. Hsung was born in China in 1966. After growing up in New York City and Boston, he obtained his B.S. in Chemistry and Mathematics in 1988 from Calvin College. He attended The University of Chicago and received his Ph.D. degree in Organic Chemistry in 1994, under the supervision of Professors Jeff Winkler and Bill Wulff. He completed his training as an NIH post-doctoral fellow in Professor Gilbert Stork's laboratory at Columbia University. In 1997, he began his academic career at the University of Minnesota, moving to University of Wisconsin at Madison in 2006. He is a recipient of numerous awards including the Camille Dreyfus Teacher-Scholar Award and National Science Foundation Career Award. His current research focuses on the development of cycloaddition and annulation strategies to natural product syntheses.

Irina K. Sagamanova was born in Noyabrsk, Russia, in 1985, and received a B.S. in Chemistry from The Higher Chemical College Russia Academy of Science in Moscow in 2006. She went to University of Minnesota and worked in Professor Richard P. Hsung's research group during the summer of 2005. Her research involves improving synthesis of chiral ynamides and exploring their reactivities.

Kimberly C. M. Kurtz was born in Findlay, OH, in 1979, and received a B.S. in Chemistry from Ohio Northern University, Ada, OH in 2001. Her father, David Kurtz, was a long time Organic Chemistry faculty at ONU. She enrolled at University of Minnesota-Twin Cities and worked in Professor Richard P. Hsung's laboratory. Her research involved improving synthesis of chiral ynamides and exploring their reactivity in various pericyclic and ring-closing reactions. In 2006, she obtained her Ph.D. in Organic Chemistry, and is currently a senior scientist in the Corporate Research Laboratory at 3M in Saint Paul, MN.


Karen Marcantonio was born and raised in Cranston, RI. She earned her BS in chemistry in 1997 at Connecticut College, doing research under Dr. Timo Ovaska and Dr. Bruce Branchini. After a summer internship at Pfizer, she began graduate school at UPenn, earning her masters from Marisa Kozlowski in 1999. She has been working in Merck Process Research since November 1999.

				TIPS-alkyne-Br	
F2 - Acquisition Parame Date_ 2006030 Time 11.0 INSTRUM spect PROBHD 5 mm QNP PULPROG zgdd TD 6553 SOLVENT CDC1 NS 17 DS 0 SWH 26246.711 FIDRES 0.400493	1 3 4 1 5 3 5 9 Hz		L 10 7 6	61.93 	
	5) usec) usec 2 K) sec) sec) sec) Si-==	⊑ —Br		
	C) usec) dB				
===== CHANNEL f2 == CPDPRG2 waltz10 NUC2 14 PCPD2 95.00 PL2 120.00 PL12 18.00 SF02 400.1322000	6 H D usec D dB D dB				
F2 - Processing paramet SI 32760 SF 100.6127460 WDW F1	B D MHz				
220 200) 180 160	140 120	100 80	60 40 20	0 ppm

Current Data Parameters NAME 67605-285-3 EXPNO 2 PROCNO 1				step 2 13C NMR
F2 - Acquisition Parameters Date_ 20060307 Time 11.11 INSTRUM spect PROBHD 5 mm QNP PULPROG zgdc TD 65536 SOLVENT DMSO NS 366 DS 0 SWH 26246.719 FIDRES 0.400493 AQ 1.6384	155.49	136.02 129.66 129.38 127.36	92.10 77.55 77.23 76.92 72.18 70.74	18.59
DW 19.050 use DE 6.00 use TE 300.2 K D1 0.1000000 sec d11 0.03000000 sec MCREST 0.0000000 sec MCWRK 0.01500000 sec	2	. ~		
===== CHANNEL f1 ====== NUC1 13C P1 2.50 use PL1 0.00 dB SF01 100.6237964 MHz		>−Si-==		
===== CHANNEL f2 f2 <thf2< th=""> f2 <thf2< th=""> <thf2< th=""> f2</thf2<></thf2<></thf2<>		h	1	
F2 - Processing parameters SI 32768 SF 100.6127484 MHz WTW FM				
 220 200	180 160		100 80 60	40 20 ppm

$ \begin{array}{c} P_{2} = Acquisition Parameters \\ Pate 2000 \\ Pate 200 \\ Pa$	Current Data Parameters NAME 67605-281-3 EXPNO 1 PROCNO 1	TIPS-alkyne-Br
NUC1 1H P1 10.00 usec PL1 -5.00 dB SF01 400.1322007 MHz F2 - Processing parameters SI 16384 SF 400.130055 MHz WDW no SSB 0 LB 0.00 Hz GB 0	Date_ 20060301 Time 10.58 INSTRUM spect PROBHD 5 mm QNP 1H/1 PULPROG zg30 TD 32768 SOLVENT CDC13 NS 28 DS 2 SWH 6561.680 FIDRES 0.200247 AQ 2.4969716 RG 80.6 DW 76.200 DE 6.00 DE 300.2 K 0.10000000 MCREST 0.0000000	
SI 16384 SF 400.1300055 MHz WDW no SSB 0 LB 0.00 Hz GB 0	NUC1 1H P1 10.00 usec PL1 -5.00 dB	
	F2 - Processing parameters SI 16384 SF 400.1300055 WDW no SSB 0 LB 0.000 Hz GB 0	

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppm

