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1. Procedure 

 
Caution! Deoxo-Fluor® reacts rapidly and exothermally with water, 

generating HF. It is volatile and a respiratory hazard and must be handled 

in a well-ventilated hood. 

 
 Bis(4-fluorophenyl)difluoromethane. An oven-dried 50-mL round-
bottomed flask equipped with an oval Teflon-coated magnetic stirring bar (2 
cm) is charged with 4,4'-difluorobenzophenone (1) (5.11 g, 23.4 mmol, 1.0 
equiv) (Note 1). Deoxo-Fluor® (Note 2) (13 mL, 15.7 g, 71 mmol, 3 equiv) 
is added via a disposable graduated pipette. The flask is fitted with a reflux 
condenser equipped with a gas inlet adapter connected to a nitrogen line and 
a gas bubbler. The reaction solution is stirred in a preheated 90 °C oil bath 
(Notes 3, 4, and 5) for 24 h under nitrogen to give a dark red mixture with 
yellow solids. The flask is removed from the oil bath and cooled to room 
temperature. Dichloromethane (30 mL) is added and the mixture is 
transferred to a 250-mL separatory funnel, followed by additional 
dichloromethane (2  30 mL) to rinse the flask. The organic solution is 
washed with water (2  50 mL) (Note 6), then saturated aqueous NaHCO3 
solution (50 mL) (caution: Due to the generation of CO2, the separatory 
funnel should be shaken carefully and the pressure released frequently). A 
final wash is carried out with saturated aqueous NaCl solution (50 mL), then 
the organic layer is vacuum-filtered through a bed of Na2SO4 (20 g) in a 
150-mL medium-porosity sintered-glass funnel.  The cake is washed with 
dichloromethane (3  25 mL) until colorless. The filtrate is concentrated by 
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rotary evaporation (40 °C bath, 100 mmHg initial vacuum, lowered to 20 
mmHg) to afford the crude product as a red oil (6.9 g). Purification using 
column chromatography (Note 7) on SiO2 affords 4.42–4.87 g of bis(4-
fluorophenyl)difluoromethane (2) as a colorless oil (78–86% yield) (Notes 8 
and 9).  
 

2. Notes 

 

1.  Reagents and solvents were used as received and sourced as 
follows: 4,4'-difluorobenzophenone (Acros, 99%), bis(2-
methoxyethyl)aminosulfur trifluoride (Deoxo-Fluor®) (Sigma-Aldrich), 
dichloromethane (Sigma-Aldrich, ACS reagent, 99.5%), silica gel (Sigma-
Aldrich, 230-400 mesh, 60 Å), ethyl acetate (Sigma-Aldrich, ACS reagent, 
>99.5%), hexanes (Sigma-Aldrich, ACS reagent, >98.5%), and sodium 
sulfate (Fisher Scientific). 

2.  Deoxo-Fluor® is volatile and a respiratory hazard and must be 
handled in a well-ventilated hood.  The checker pipetted Deoxo-Fluor® in 
the hood and weighed the stoppered flask before and after addition.   

3.  Deoxo-Fluor® is known to decompose initiating at 140 °C.2 Thus, 
the oil bath temperature must be kept below 110 °C for safety concerns. A 
90 °C oil bath temperature provides efficient fluorination; raising the oil 
bath temperature to 100 °C does not improve the yield. For substrates with 
high molecular weight, such as 4,4'-dibromobenzophenone, the stirring may 
be difficult at the beginning, but this does not affect the reaction yield as the 
stirring gradually becomes more efficient during the course of the reaction.   

4.  In a separate experiment, a 2.5 g reaction was carried out in 2-
necked, 50-mL flask with a thermocouple thermometer inserted through a 
septum. The internal temperature was monitored (84 °C) using a J-Kem 
Gemini digital thermometer with a Teflon-coated T-Type thermocouple 
probe (12-inch length, 1/8 inch outer diameter, temperature range –200 to 
+250 °C).  This reaction proceeded to 84% conversion with a 78% isolated 
yield. 

5.  The reaction was monitored by 1H NMR as follows.  A drop of the 
reaction mixture was added to 1 mL of CDCl3 and 1 mL of sat. NaHCO3.  
The layers were mixed, then the bottom layer was filtered into an NMR tube 
through Na2SO4 and a cotton plug. Multiplets at 7.20 and 7.85 ppm from the 
starting material were integrated relative to the product resonances at 7.1 and 
7.5 ppm to assess conversion. The reaction proceeded to 84–90% conversion 
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for experiments carried out at the 2.5-5 g scale. Additional reaction time did 
not result in increased conversion. Addition of one equiv of Deoxo-Fluor® at 
the end of the reaction and heating for a further 24 h only increased 
conversion by 2-3%.  

6.  Slight foams are produced due to the remaining Deoxo-Fluor® or its 
decomposition products. 

7.  A 5-cm glass column is wet-packed (2.5% hexanes/EtOAc) with 
SiO2 (200 g) topped with 0.5 cm sand. The crude reaction product is loaded 
neat onto the column and eluted as follows: 2.5% EtOAc/hexanes (600 mL), 
3% EtOAc/hexanes (750 mL), collecting 50-mL fractions. TLC (UV 
visualization) is used to follow the chromatography. The Rƒ value of the title 
compound is 0.5 (2.5% EtOAc/hexanes), the starting material has an Rƒ of 
0.05. Fractions 8-21 are concentrated by rotary evaporation (40 °C bath, 20 
mmHg), then vacuum dried (20 mmHg) at 22 °C for 2 h to constant weight 
(4.42–4.87 g, 78–86% yield). The product contains <0.1 wt % EtOAc and 
hexanes by 1H NMR analysis. Fractions 25-29 are combined and 
concentrated to afford 0.50–0.8 g (10–16%) of unreacted starting material 1. 

8.  The checker obtained the following yields from three experiments: 
 

Scale (1) Isolated product 2 (%) Unreacted starting material (1) (%) 

5.11 g 4.86 g (86%) 0.50 g (10%) 

3.88 g 3.56 g (83%) 0.49 (13%) 

2.56 g 2.19 g (78%) 0.41 (16%) 

 
9. Bis(4-fluorophenyl)difluoromethane (2) has the following physical 

and spectroscopic data:  1H NMR (400 MHz, CDCl3) : 7.09-7.14 (m, 4 H), 
7.46-7.51 (m, 4 H); 19F NMR (376 MHz, CDCl3) : –110.7 (t, 6

JFF = 3 Hz, 2 
F, Ar-F), –86.3 (t, 6

JFF = 3 Hz, 2 F, CF2); 
13C NMR (100 MHz, CDCl3) : 

115.5 (d, 2
JCF = 22 Hz), 120.1 (t, 1

JCF = 242 Hz), 128.1 (dt, 3
JCF = 9.0 Hz, 

3
JCF = 5.2 Hz), 133.5 (td, 2

JCF = 29 Hz, 4
JCF = 3 Hz), 163.6 (dt, 1

JCF = 249 
Hz, 5

JCF = 2 Hz); MS (EI) m/z 240 (M+, 48), 221 (16), 145 (100), 126 (16), 
95 (18), 75 (17). GC/MS (Shimadzu QP2010S equipped with a 30 m  0.25 
mm SHR-XLB GC column and an EI ionization MS detector) indicated 
product purity >99%. An analytical sample was prepared by dissolving 100 
mg of product in 3 mL of hexanes, filtering through a 0.45 micron PTFE 
syringe filter, and vacuum concentration for 3 h at ambient temperature. 
Anal. calcd. for C13H8F4: C, 65.01; H, 3.36; found: C, 64.77; H, 3.32. 
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Safety and Waste Disposal Information 

 

All hazardous materials should be handled and disposed of in 
accordance with "Prudent Practices in the Laboratory"; National Academy 
Press; Washington, DC, 1995. 
 

3. Discussion 

 

Selective fluorination of carbonyl groups to the gem-difluorides is a 
useful transformation that has been traditionally achieved by the use of 
gaseous sulfur tetrafluoride3 and diethylaminosulfur trifluoride (DAST)4; 
however, the harsh reaction conditions and the toxicity of sulfur tetrafluoride 
and the thermal instability of DAST have limited their use in large-scale 
reactions. Deoxo-Fluor® is known to be more thermally stable than DAST.2,5  

Compared with the well-studied fluorination of the carbonyl group of 
aldehydes and alkyl ketones, the carbonyl group of diaryl ketones is much 
less reactive under the general fluorination conditions and requires harsh 
conditions, which causes safety concerns.6 Thus, two-step procedures which 
involve conversion of the carbonyl group of benzophenones to more reactive 
thioketones or thiolanes were developed for the gem-difluorination of 
benzophenones.6-7 The direct fluorination procedure of benzophenones with 
Deoxo-Fluor® described here is a modified procedure of our previously 
reported method.8 In this work, the fluorination reactions are conducted in a 
flask equipped with a reflux condenser under a nitrogen atmosphere rather 
than in a closed system, such as a pressure tube and screw-capped vial. The 
implementation of this more general experimental procedure allows a more 
convenient, safer, and scalable preparation of gem-difluoride compounds 
from the corresponding benzophenones.  

The fluorination of 4,4’-difluorobenzophenone (1 g scale) with 
Deoxo-Fluor® was monitored by GC/MS and the conversion was improved 
from 56% to 75% by increasing the reaction time from 4 to 24 h. 
Considering the high cost of Deoxo-Fluor® and the limited solubility of 
some of the substrates in Deoxo-Fluor® under neat conditions, we choose 24 
h as the standard reaction time. The effect of the fluorinating reagent ratio on 
the conversion was investigated using benzophenone (1 g scale) as substrate. 
When 1.4 equiv of Deoxo-Fluor® was used, the corresponding gem-
difluoride was isolated in 27% yield. Increasing the amount of Deoxo-Fluor®  
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Table 1. Conversion of Diaryl Ketones to Diaryldifluoromethanesa 
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Entry Substrate Product Yieldb

Deoxo-Fluor®

a Reactions were conducted in an oven-dried 10 mL one-necked round-bottomed flask using 

1.0 g of benzophenone substrate and 3 equiv of Deoxo-Fluor®.b  Isolated yield; remainder of 

mass balance is unreacted starting material. c Yield from a 5.0 g scale reaction.  
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to 3 equiv improved the yield to 63%. No significant additional 
improvement was obtained by a further increase of Deoxo-Fluor® to 4 equiv.  

The scope of the direct conversion of the carbonyl groups of 
benzophenones to the gem-difluorides was examined with substrates 
containing halogen, alkoxy, and nitro substituents on one or both aromatic 
rings (Table 1). The effect of steric hindrance was observed in the gem-
difluorination of 2-chlorobenzophenone, as only a 20% yield was obtained 
(entry 2). The electronic effect also plays an important role in the reaction 
yields: substrates bearing an electron-withdrawing group formed the gem-
difluorinated products in good to high yields (61–95%, entries 1 and 3–10) 
while low yields were obtained for benzophenones bearing an electron-
donating group such as methoxy (13%, entry 11).  
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Appendix 

Chemical Abstracts Nomenclature (Registry Number) 

 

Deoxo-Fluor: Bis(2-methoxyethyl)aminosulfur trifluoride: Ethanamine, 2-
ethoxy-N-(2-ethoxyethyl)-N-(trifluorothio)-; (202289-38-1) 

Benzophenone: Diphenylmethanone: Benzoylbenzene; (119-61-9) 
Bis(4-fluorophenyl) ketone: 4,4'-Difluorobenzophenone; (345-92-6) 
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