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Working with Hazardous Chemicals 
 

The procedures in Organic Syntheses are intended for use only by persons with proper 
training in experimental organic chemistry.  All hazardous materials should be handled 
using the standard procedures for work with chemicals described in references such as 
"Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 
2011; the full text can be accessed free of charge at 
http://www.nap.edu/catalog.php?record_id=12654).  All chemical waste should be 
disposed of in accordance with local regulations.  For general guidelines for the 
management of chemical waste, see Chapter 8 of Prudent Practices.  

In some articles in Organic Syntheses, chemical-specific hazards are highlighted in red 
“Caution Notes” within a procedure.  It is important to recognize that the absence of a 
caution note does not imply that no significant hazards are associated with the chemicals 
involved in that procedure.  Prior to performing a reaction, a thorough risk assessment 
should be carried out that includes a review of the potential hazards associated with each 
chemical and experimental operation on the scale that is planned for the procedure.  
Guidelines for carrying out a risk assessment and for analyzing the hazards associated 
with chemicals can be found in Chapter 4 of Prudent Practices. 

The procedures described in Organic Syntheses are provided as published and are 
conducted at one's own risk.  Organic Syntheses, Inc., its Editors, and its Board of 
Directors do not warrant or guarantee the safety of individuals using these procedures and 
hereby disclaim any liability for any injuries or damages claimed to have resulted from or 
related in any way to the procedures herein. 

September 2014: The paragraphs above replace the section “Handling and Disposal of Hazardous 
Chemicals” in the originally published version of this article.  The statements above do not supersede any 
specific hazard caution notes and safety instructions included in the procedure. 

Copyright © 2011 Organic Syntheses, Inc.  All Rights Reserved 
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PALLADIUM CATALYZED CROSS-COUPLING OF (Z)-1-

HEPTENYLDIMETHYLSILANOL WITH 4-

IODOANISOLE: (Z)-(1-HEPTENYL)-4-

METHOXYBENZENE 
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 The cross-coupling of organosilanols has emerged as a viable 

alternative to the classical methods of Suzuki (boronic acids), Stille 

(stannanes) and Negishi (organozincs).
2
  The major developments over the 

past years have been the significant expansion of the scope of the 

organosilanol (or silanol precursor) and the introduction of non-fluoride 

activation of the silanols.  Both advances will be summarized here.  

 

Scope of Organosilanol Donor 

 

 Over the past ten years, a wide range of organosilanols have been 

prepared
3 

and shown to be competent partners in the fluoride-activated cross 

coupling with aromatic and olefinic halides (including bromides
4
) and 

triflates.
5
  Most notable has been the extension to pyranylsilanols,

6
 cyclic 

siloxanes generated by intramolecular hydrosilylation,
7
 intramolecular 

silylformylation,
8
 and ring-closing metathesis

9
 (Figure 1). The latter tandem 

process (RCM-cross-coupling) was featured in a total synthesis of (+)-

brasilenyne (Figure 2).
10

 In addition, silylcarbocyclization-formylation
11

 

allowed for the construction of the pyrrolidine core of isodomoic acids G 

and H (Figure 3).
12

 The final cross-coupling step involved a fluoride 

mediated process that employed a buffered form of TBAF (octahydrate).   
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Figure 1. Newer variations of fluoride-promoted, silicon-based-cross 

coupling reactions.   
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Figure 2. Fluoride-promoted intramolecular alkenyl-alkenyl cross-coupling 

for the syntheses of brasilenyne. 
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Figure 3. Fluoride-promoted intermolecular alkenyl-alkenyl cross-coupling 

for the syntheses of isodomoic acids G and H. 
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Fluoride-Free Cross-Coupling Reactions 

 

 By far the most important advance in the past five years has been the 

discovery of a preparatively useful and mechanistically distinct
13

 pathway 

for cross-coupling of organosilanols that employs various Brønsted bases as 

activators.
2d

  This discovery has allowed for a wider range of coupling 

partners to be incorporated and also for milder reaction conditions to be 

employed.  For example is it now possible to effect the cross-coupling of 

simple alkenylsilanols and alkynylsilanols (with KOTMS),
14

 arylsilanols 

(with Cs2CO3),
15

 and 2-indolylsilanols (with KOt-Bu),
16

 and 

isoxazolinylsilanols (with KOt-Bu)
17

 (Figure 4). 
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Figure 4. Variations of fluoride-free, cross-coupling reactions. 

 

 The ability to couple silanols under fluoride-free conditions has 

allowed the introduction of the preformed silanolate salts as viable coupling 

partners.  The salts can be easily prepared by deprotonation with NaH or KH 

and are, in general, stable, free flowing powders.  The silanolates couple 

directly without the need for added bases or activators.  Accordingly, 

heterarylsilanolates derived from indoles, thiophenes, furans
18

 as well as a 
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wide range of aromatic silanolates
19

 have been successfully employed.  

Finally, alkenylsilanolates also undergo high yielding and highly 

stereospecific cross-coupling with aryl chlorides
20

 (Figure 5).  
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Figure 5.  Cross-coupling reactions of preformed silanolate salts. 

 

 The demonstration of both fluoride and non-fluoride activation for 

silicon-based cross-coupling has led to the development of a conjunctive 

reagent that allows for sequential coupling at separate ends of a 1,4-

butadiene unit.
21

  This application was featured in the total synthesis of RK-

397 (Figure 6).
22
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Figure 6. Sequential cross-coupling of a 1,4-bissilyl-1,3-butadiene.   
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 The construction of the key aryl glycosidic bond en route to 

papulacandin D highlights the synthetic utility of the Brønsted base 

activation method (Figure 7).
23

 The glycal silanol would not withstand 

activation by fluoride and the resorcinol coupling partner is highly 

deactivated. Nevertheless, the desired coupling could be achieved by the 

action of sodium tert-butoxide at 50 ˚C in the presence of Pd2(dba)3•CHCl3. 

The coupled product contains the entire carbon framework of the sugar 

fragment of papulacandin D. 
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Figure 7. Fluoride-free alkenyl-aryl cross-coupling for the total synthesis of 

papulacandin D. 
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