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Discussion Addendum for: 

Diastereoselective Homologation of D-(R)-Glyceraldehyde 

Acetonide Using 2-(Trimethylsilyl)thiazole: 2-O-Benzyl-3,4-

isopropylidene-D-erythrose 
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Introduction 

 

 Over the last several decades, numerous heterocycles have emerged as 

useful tools (precursors, reagents, chiral auxiliaries) in new methodologies 

for organic synthesis.
2
 In that context, the five-membered heterocycle 1,3-

thiazole attained considerable popularity by virtue of its stability under a 

wide range of reaction conditions, as well as its facile conversion into the 

formyl group by a very efficient three-step one-pot procedure.
3
 The 

widespread use of the thiazole ring as masked formyl group led to the 

formulation of a general synthetic strategy that we have referred to as the 

“Thiazole-Aldehyde Synthesis”.
4
 Thus, the stereoselective synthesis of a 

chiral -hydroxy aldehyde (aldehydo-D-erythrose) by one-carbon chain 

homologation of D-glyceraldehyde using 2-trimethylsilylthiazole (2-TST or 

TMST) as a formyl anion equivalent (see scheme above) represented the 

first example of diastereoselective thiazole-based synthesis reported from 

our laboratory in 1986. Notably, this reaction sequence was repeated over 

several consecutive cycles, with the result being that various chiral 

polyhydroxylated aldehydes (aldehydo sugars) with up to eight carbon atoms 

were prepared.
5
 Moreover, this strategy was applied also to dialdoses to 

give, via elongation of the side chain, homologues with up to nine carbon 

atoms.
6
 Thus, as 2-TST can be easily prepared by an efficient procedure (see 

the original paper in this journal), or can be purchased at reasonable price 
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from a number of suppliers, its use in the Thiazole-Aldehyde Synthesis over 

the past 25 years became routine. Most notable is the fact that 2-TST reacts 

readily with aldehydes and other C-electrophiles (acyl chlorides, pyridinium 

chlorides, ketenes),
7
 as well as sulfenyl halides,

8
 without the need of any 

catalytic fluoride ion. These fluoride-free C- and S-desilylation processes 

had no precedents in silicon chemistry as they proceed by a special 

mechanism involving a thiazolium ylide intermediate.
9
 

 

Scope of the 2-TST-Based Thiazole-Aldehyde Synthesis 

 

 The key role of 2-TST (often referred to as the Dondoni reagent) 

serving as a masked formyl anion equivalent has been reviewed in a 

comprehensive article
3 

covering the period ranging from its first synthesis
10

 

in 1981 up to 2003. Nevertheless, some examples highlighting the role of 2-

TST in synthetic routes leading to biologically active compounds are 

reported again below in Schemes 1-10 of this discussion addendum. 

 

O
O

O

O

S

N

OH

O
O

O

O
CHO

OBn 67%

1. BnBr, NaH
2. MeOTf
3. NaBH4
4. CuCl2, H2O

4 steps

87%

O

OAc

OAcAcO

O

OAc

O
OAc

OC(O)NH2OAc

OAc

O
CHO

O

O

O

ds 95%

2-TST

 

 

Scheme 1. Synthesis of the disaccharide subunit of bleomycin A2 from 

aldehydo-L-xylose.
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Scheme 2. Synthesis of the oligosaccharide portion of everninomicin 

13,384-1 from aldehydo-L-threose.
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Scheme 3. Synthesis of an acetylated phytosphingosine from N-Boc serinal 

acetonide.
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Scheme 4. Synthesis of a protected amino diol, a building block of renin 

inhibitors, from N-Boc cyclohexylalaninal.
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Scheme 5. Synthesis of a hydroxyethylamine isosteric dipeptide precursor 

of Saquinavir (Ro 31-8959) from N-Boc phenylalaninal (Hoffman-La Roche 

method).
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Scheme 6. Synthesis of a hydroxyethylamine isosteric dipeptide precursor 

of Saquinavir (Ro 31-8959) from N-Boc,N-PMB phenylalaninal (Dondoni 

method).
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Scheme 7. Synthesis of a chiral pseudo C2-symmetric 1,3-diamino-2-

propanol derivative from N-Boc phenylalaninal.
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Scheme 8. Synthesis of N-benzoyl 3-phenylisoserine, viz the side chain of 

Taxol, from N-benzoyl phenylglycinal.
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Scheme 9. Synthesis of N-Boc and acetonide protected 5-O-carbamoyl 

polyoxamic acid from chiral epoxy butanal.
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microbial agent AI-77-B from a formyl oxazolidine.
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 Even with the development of new research methods, the Thiazole-

Aldehyde Synthesis based on the use of 2-TST continued to be an attractive 

synthetic tool. Thus, recent applications of this chemistry that have been 

carried out in our own and other laboratories are reported below. 

 In the context of a study on the synthesis of C-fucosides of biological 

relevance, we set out to develop the syntheses of R- and S-epimeric C-

fucosyl hydroxyphenyl acetates
21

 (Scheme 11). These glycoconjugates were 

expected to constitute the glycosidic part of new antibiotics similar to 

existing natural products.
22

 The -L-C-fucosyl aldehyde 1, which was 

prepared in our laboratory, was utilized as the starting material for the 

synthesis of both epimers. The chiral alcohols 4 and 5 with R and S 

configuration at quaternary carbon atoms, respectively, were produced by 

using essentially the same reagents, but employing them in an inverse order. 

For example, aldehyde 1 was first reacted with phenylmagnesium bromide 

(PhMgBr) and the resulting mixture of diastereomeric alcohols was oxidized 

to give the ketone 2. Addition of 2-lithiothiazole (2-LTT) to this ketone 
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afforded the R-configured tertiary alcohol 4. For the preparation of the 

alternate epimer, the sequence was initiated by the addition of 2-TST to the 

aldehyde 1 and oxidation of the mixture of epimeric alcohols to ketone 3 

followed by addition of PhMgBr to furnish the S-configured alcohol 5. 

Having both stereoisomeric tertiary alcohols 4 and 5 in hand, their absolute 

configuration was assigned from their 
1
H NMR spectra (NOE experiments). 

Finally, both thiazolyl alcohols were readily transformed in the 

corresponding aldehydes 6 and 7 by the standard thiazole-to-formyl 

unmasking protocol and these aldehydes were oxidized to the representative 

esters 8 and 9.  
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Scheme 11. Syntheses of R- and S-epimer C-fucosyl hydroxyphenyl 

acetaldehydes and acetates. 

 

 Another paper on the use of 2-TST in the Thiazole-Aldehyde 

Synthesis that appeared in mid-2005 was reported by Alcaide, Almendros, 

and their co-workers.
23

 These authors developed a synthetic route leading to 

azabicyclo[4.3.0]nonane (indolidizinone) amino esters from -lactams 

(Scheme 12) by using -alkoxy -lactam acetaldehydes as key 

intermediates. Interest in the synthesis of indolizidinone amino acids 

stemmed from their behavior as conformationally restricted dipeptide 

mimetics. Thus, the readily available enantiopure 4-oxoazetidine-2-

carbaldehydes 10 and 11 were transformed into the one-carbon higher 

homologues via stereoselective addition of 2-TST to give the thiazole 
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derivatives 12-13 and unmasking of the formyl group from the thiazole ring 

(Scheme 12). In all cases, well established conditions
4
 for 2-TST addition to 

aldehydes, as well as for thiazole cleavage, were employed resulting in the 

isolation of the -alkoxy -lactam acetaldehydes 14 and 15 in good yields. 

These aldehydes were transformed into the target indolizidinone amino 

esters 16 and 17 via standard heterocyclic chemistry. A similar 2-TST-based 

strategy was followed by the same research group for the conversion of 

enantiopure cis-4-formyl-1-(3-methyl-2-butenyl)-3-methoxy- -lactam into 

the corresponding higher homologue, an -silyloxylated aldehyde that 

served as key intermediate for the synthesis of a mixture of diastereomeric 

dihydroxycarbacephams via an intramolecular carbonyl-ene reaction.
24

 It 

was emphasized in both instances that the addition of 2-TST to 4-

oxoazetidine 2-carbaldehydes to give the -hydroxyalkylthiazoles was not a 

trivial process as the same authors had previously observed the reaction of 

2-TST with N-aryl-4-formyl- -lactams to give enantiopure -alkoxy- -keto 

acid derivatives via N1-C4 bond cleavage of the -lactam ring.
25
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Scheme 12. Synthesis of -alkoxy -lactam acetaldehydes from 4-

oxoazetidine-2-carbaldehydes en route to azabicyclo[4.3.0]nonane 

(indolidizinone) amino esters. 

 

 A fourth paper on the use of 2-TST was reported in 2007 by Cateni 

and co-workers in the effort to prepare a natural cerebroside from 

Euphorbiaceae.
26

 These authors took advantage of the availability of the O- 

and N-protected amino sugar 18 (L-ribo configuration) that was previously 

prepared in our laboratory by 2-TST-based homologation of the Garner 

aldehyde.
13 

Thus, the aldehydo sugar 18 was transformed into the one-

carbon higher homologue 19 by the standard 2-TST-based methodology 
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(Scheme 13). Wittig reaction of this aldehydo sugar (L-allo configuration) 

with a long chain alkyl phosphorane afforded under suitable conditions the 

Z-olefin 20 displaying a chiral polar head and a lipophilic tail. Compound 20 

was, in fact, the required C18-sphingosine, which after glycosylation and 

acylation at the polar head, led to the targeted natural cerebroside. 
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Scheme 13. Synthesis of a C18-sphingosine intermediate in the synthesis of a 

natural cerebroside. 

 

Conclusion 

 

 From the selected examples reported in the above schemes, it appears 

that since its discovery in 1981, 2-TST has found use as a formyl anion 

equivalent in various synthetic routes leading to compounds of biological 

relevance. The fidelity of this reagent to react spontaneously with aldehydes 

bearing a wide variety of substituents has been amply demonstrated. It has to 

be mentioned, however, that the synthetic utility of 2-TST extends beyond 

its use in the Thiazole-Aldehyde Synthesis, as in recent years numerous 

applications of this reagent have appeared in thiazole chemistry
27

 and in 

synthetic routes leading to thiazole-containing compounds of biological 

relevance.
28
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