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September 2014: The paragraphs above replace the section “Handling and Disposal of Hazardous 
Chemicals” in the originally published version of this article.  The statements above do not supersede any 
specific hazard caution notes and safety instructions included in the procedure. 



Org. Synth. 2012, 89, 471-479  471 
Published on the Web 5/4/2012 

© 2012 Organic Syntheses, Inc. 

Reductive Radical Decarboxylation of Aliphatic Carboxylic 

Acids 

 

O

Cl

N S

ONa

CHCl3 hv

CH3

 

 

Submitted by Eun Jung Ko,
1
 Craig M. Williams,

1
 G. Paul Savage,

2
 and John 

Tsanaktsidis.
2
 

Checked by Samantha R. Levine, Aaron Bedermann, and John L. Wood.  

  

1. Procedure 

 

An oven-dried (Note 1) 500-mL four-necked, round-bottomed flask 

(Note 2) is equipped with a 3-cm Teflon-coated oval stir bar, a 125-mL 

pressure-equalizing addition funnel sealed with a septum, a thermometer, a 

septum, and a reflux condenser fitted with a gas inlet adapter and connected 

to a dual manifold (Note 3). The reaction vessel is charged with chloroform 

(120 mL) (Note 4), 1-hydroxypyridine-2(1H)-thione, sodium salt (5.90 g, 

39.6 mmol, 1.2 equiv) (Note 5) and 4-N,N-dimethylaminopyridine (0.040 g, 

0.33 mmol, 0.01 equiv) to give an off-white suspension. The addition funnel 

is charged with palmitoyl chloride (10 mL, 9.06 g, 33.0 mmol, 1.0 equiv) 

followed by chloroform (60 mL), and the entire apparatus is blanketed with 

a slight positive pressure of nitrogen to maintain an inert atmosphere 

throughout the course of the reaction (Note 6).  

The reaction vessel is heated to reflux over 25 min (silicon oil bath, 

external bath temperature 80 °C, internal temperature 57 °C) and the 

palmitoyl chloride solution is then added drop-wise over 85 min with 

concomitant irradiation from a tungsten lamp (120V, 150W) (Note 7). The 

reaction mixture remains a suspension, which gradually turns yellow upon 

the addition of palmitoyl chloride. Visible evolution of carbon dioxide is 

observed by 30 min. After an additional 25 min of stirring an orange 

suspension is observed (Note 8).  Heating and irradiation is then 

discontinued and the resulting orange/brown suspension is allowed to cool to 

an internal temperature of 25 °C and transferred to a 500-mL separatory 

funnel containing 1M HCl (100 mL) and CH2Cl2 (100 mL). The aqueous 
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phase is separated and extracted with CH2Cl2 (3 x 50 mL). The combined 

organic layers are washed with saturated NaCl solution (100 mL), dried over 

5.9 g of MgSO4, filtered through a 350 mL medium porosity sintered glass 

funnel, and concentrated by rotary evaporation (bath temperature increased 

from 25 to 35 °C, 250 mmHg) and then at 3 mmHg to afford a yellow-brown 

oil.  

The neat product is charged on a plug (6 x 10 cm) of 150 g of silica 

gel (Note 9) and eluted with 1 L of petroleum ether 35 – 60 °C directly into 

a 2-L round-bottomed flask (Note 10). This solution is concentrated by 

rotary evaporation (bath temperature increased from 25 to 30 °C, pressure 

reduced from 400 to 250 mmHg) and then at 3 mmHg to afford 6.29 g 

(90%) (Note 11) of pentadecane as a clear, colorless oil (Note 12). 

 

2. Notes 

 

1.  The submitters used an oven set to 180 °C, assembled the 

apparatus while still hot, and allowed it to cool to ambient temperature (23 

°C) under vacuum (0.9 mmHg). The checkers used an oven set to 180 °C, 

allowed the apparatus to cool to ambient temperature (20 °C) in a dessicator 

containing Drierite, assembled it, and evacuated and backfilled the system 

three times with nitrogen. 

2.  The submitters used a 500-mL two-necked round-bottomed flask, 

the checkers chose to use a four-necked flask to facilitate TLC and internal 

reaction temperature monitoring. 

3.  Depiction of the experimental set-up, including the position of the 

light source, is illustrated in Figure 1. 

 4.  The submitters obtained 4-N,N-dimethylaminopyridine (99%)  and 

palmitoyl chloride (98%) from Sigma-Aldrich, Inc. which were used as 

received. Chloroform (99.8%) was purchased from ChemSupply Co., Inc. 

and distilled from P2O5 prior to use. The checkers obtained 4-N,N-

dimethylaminopyridine (99%)  from Acros Organics and palmitoyl chloride 

(98%) from MP Biomedicals, LLC., both of which were used as received. 

Chloroform (99.8%) was purchased from Mallinckrodt Chemicals, Inc., and 

was washed with water, dried over K2CO3, and distilled from Na2SO4 prior 

to use.  

5.  The submitters purchased 1-hydroxypyridine-2(1H)-thione, 

sodium salt as a 40 % solution in water from Merck. The water was removed 

under reduced pressure (40 °C, 20 mmHg) and the resulting yellow solid 
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was recrystallized from ethanol to give a white powder. The checkers 

purchased 1-hydroxypyridine-2(1H)-thione, sodium salt as a 40 % solution 

in water from Alfa Aesar. The water was removed under reduced pressure 

(30 °C, 3 mmHg) and the resulting yellow solid was dissolved in ethanol and 

triturated with hexanes to give an off-white powder. 

 

 
Figure 1. Experimental set-up used in the reaction 

 

6. The submitters used argon to maintain an inert atmosphere. 

7. The submitters performed the addition over 40 min (1.5 mL/min) 

with concomitant irradiation from a tungsten lamp (240V, 500W). The 

reaction mixture turned bright yellow upon addition of the palmitoyl 

chloride, with the color fading as the evolution of carbon dioxide was 

observed. After 1 h the bright yellow coloration faded to an orange/brown 

color. 

8. The progress of the reaction was monitored by TLC analysis on 

silica gel with 15% EtOAc-hexanes as the eluent and visualization with p-

anisaldehyde. The acid chloride starting material has Rf = 0.53 (white), the 

alkane product is not observable by TLC.  

9.  The submitters obtained silica gel (particle size 0.040 – 0.063 mm) 

230-400 ASTM mesh from Advanced Molecular Technologies. The 
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checkers obtained silica gel (particle size 0.04 – 0.063 mm) 230-400 mesh 

from Silicycle. 

10. The submitters diluted the brown residue with CH2Cl2 (10 mL), 

which was charged on plug (9 cm Ø) of 250 g of silica gel, eluting with 

petroleum ether 40 – 60 °C (1500 mL) which was obtained from Merck and 

purified by distillation prior to use. After removal of the solvent by rotary 

evaporation (40 °C, 300 mmHg) a yellow oil was obtained. This oil was 

further purified by bulb-to-bulb distillation using a Büchi Glass Oven B-580 

Kugelrohr at 93 °C (0.9 mmHg) whose receiving bulb was cooled with dry 

ice to yield 5.7 g (81%) of pentadecane as a colorless oil. 

11. When the reaction was carried out on a 27.9 mmol scale the 

checkers obtained a yield of 83%. 

12.  The product exhibits the following properties: max/cm
-1

 (neat) 

2956, 2923, 2853; 
1
H NMR (400 MHz, CDCl3) H 1.26 (26H, br s), 0.88 (6H, 

t, J = 6.8 Hz); 
13

C NMR (100 MHz, CDCl3) C 32.1, 29.9, 29.8, 29.5, 22.9, 

14.3; m/z GC/MS 212; Anal. calcd. for C15H32: C, 84.82; H, 15.18; found: C, 

84.70; H, 14.91. 

 

Safety and Waste Disposal Information 

 

 All hazardous materials should be handled and disposed of in 

accordance with “Prudent Practices in the Laboratory”; National Academies 

Press; Washington, DC, 2011. 

 

3. Discussion 

 

 The Barton decarboxylation is a radical reaction in which a carboxylic 

acid is first converted to a thiohydroxamate ester, which upon heating 

(optionally in the presence of a radical initiator or light) undergoes 

homolytic cleavage, followed by loss of carbon dioxide (Scheme 1). The 

resulting aliphatic radicals can then be trapped by a variety of reagents 

leading to new functionality. Using this reaction it is possible to remove the 

carboxylic acid group from aliphatic carboxylic acids and replace it with 

other functional groups.
3
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Scheme 1. Barton radical decarboxylation reaction. 

 

 The intermediate thiohydroxamate ester can be obtained by reacting 

an acid chloride and the sodium salt of 1-hydroxypyridine-2(1H)-thione (5) 

as in this report, or directly from the carboxylic acid using N,N'-

dicyclohexylcarbodiimide (DCC) and similar coupling methods.
4
 We found 

that the acid chloride method was generally more reliable. The acid 

chlorides can be prepared by the action of oxalyl chloride or thionyl chloride 

on the carboxylic acid.
5
  

Reductive decarboxylation (Scheme 1, X = H) is an important subset 

of the Barton procedure, which ultimately results in replacing the carboxylic 

acid function with a hydrogen atom.
6
 Under this protocol, reductive 

decarboxylation is accomplished by mild photochemical decomposition of 

the corresponding thiohydroxamate ester, in the presence of a suitable 

hydrogen donor (H-donor), originally tributyltin hydride or tert-butylthiol. 

We recently discovered that it is more convenient, safer, and less expensive 

to use chloroform as both solvent and H-donor in these reactions.
7
 Aromatic 

carboxylic acids do not undergo this reaction. The procedure described 

herein is applicable to aliphatic carboxylic acids with the best results 

generally from primary and secondary acids (Table 1). The reductive 

decarboxylation product of especially hindered tertiary carboxylic acids 

using this method may sometimes be contaminated with the corresponding 

alkyl chloride, which arises by competing chlorine atom transfer from 

chloroform. In these cases, the addition of a stronger H-donor, such as tert-

butyl thiol, is recommended. 
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Table 1. Examples of Barton reductive decarboxylations 
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Appendix 

Chemical Abstracts Nomenclature; (Registry Number) 

 

1-Hydroxypyridine-2(1H)-thione, sodium salt: 2(1H)-Pyridinethione, 1-

hydroxy-, sodium salt; (3811-73-2) 

4-N,N-Dimethylaminopyridine: 4-Pyridinamine, N,N-dimethyl-; (1122-58-3) 

Palmitoyl chloride: Hexadecanoyl chloride; (112-67-4) 
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