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Procedure	
  
 

A. Pyrimidine-5-carboxylic acid p-tolylamide methanesulfonate (2).  A 
475 mL Parr vessel containing a cylindrical Teflon-coated magnetic stir bar 
(5 cm in length, 1 cm in diameter) is charged with p-tolylamine (4.01 g, 
37.1 mmol, 1.0 equiv) (Note 1), 5-bromo-pyrimidine (7.34 g, 44.8 mmol, 
1.2 equiv) (Note 2), palladium acetate (257 mg, 1.23 mmol, 0.03 equiv) (Note 
3), and ligand 1 (970 mg, 2.25 mmol, 0.06 equiv) in open air (Note 4).  
Acetonitrile (80.0 mL) (Note 5) and N,N-diisopropylethylamine (26.1 mL,  
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149 mmol, 4.0 equiv) (Note 6) are added to the vessel.  The vessel is sealed 
and purged with carbon monoxide three times. The vessel is then 
pressurized with carbon monoxide to 100 psi, and placed in a room-
temperature oil bath.  The oil bath is heated to 100 °C.  The reaction is 
stirred at 100 °C (bath temperature) and 100 psi CO for 4 h (Notes 7 and 8).  
The reaction vessel is removed from the oil bath and cooled to ambient 
temperature while stirring.  After releasing the pressure, HPLC analysis 
shows that p-tolylamine is fully consumed.  The reaction mixture is 
transferred to a 250 mL one-necked round-bottomed flask and concentrated 
on a rotary evaporator (Note 9) to fully remove acetonitrile and the tertiary 
amine. To the resulting dark semi-solid is added 2-MeTHF (100 mL) 
(Note 10) and 1 M aqueous NaOH (50 mL), and the resulting dark mixture 
is stirred vigorously for 1 h (Note 11).  The two-phase mixture is then 
filtered through a pad of Celite (1 cm) in a 150 mL fritted funnel (medium 
porosity, Note 12) into a one-necked 500 mL round-bottomed flask using 
house vacuum.  The Celite pad is washed with 2-MeTHF (2 x 100 mL).  The 
combined filtrates are transferred to a 1 L separatory funnel and allowed to 
stand for 15 min. The lower aqueous layer is discarded.  The upper organic 
layer is washed with water (2 x 100 mL) and then transferred to a one-
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necked 500 mL round-bottomed flask (Note 13).  Dry silica gel (16 g) is 
added to the flask, and the resultant mixture is dried on a rotary evaporator 
until a brown powder is obtained (Note 14).  This material is then placed 
atop a silica gel column (250 g, 8 cm diameter) that had been conditioned 
with 450 mL 20% EtOAc/hexanes. Sand is added on top of the silica gel.  
The column is eluted first with 1300 mL 20% EtOAc/hexanes to remove 
non-polar impurities. Pure EtOAc is then used to elute the product.  The 
fractions are then combined and concentrated in vacuo to give 6.1 g of the 
crude free base product as a light brown solid (Note 15).  A final 
purification is then carried out (Note 16).  The solids are transferred to a 
three-necked 250 mL flask (the necks contain an inert gas valve and two 
septa, one containing a thermocouple), followed by addition of 2-MeTHF 
(85 mL).  The mixture is stirred for ca 5 min at 65 °C under N2 to give a 
brown solution.  Methanesulfonic acid (1.95 mL, 30 mmol, 0.8 equiv) (Notes 
17, 18 and 19) is then added at once via syringe, causing the immediate 
formation of a thick slurry of the MsOH salt.  The suspension is stirred at 
65 °C for 30 min, then heat is turned off and the mixture is allowed to cool 
slowly to ambient temperature (approximately three hours).  The slurry is 
then filtered through a medium-fritted filter funnel using house vacuum, 
washing the cake with 2-MeTHF (1 x 20 mL).  After 30 min, the dry solids 
are collected to give 8.7 g (76%) of the product salt as a tan powder (Notes 
20, 21, and 22). 
 
 
Notes	
  
 
1. p-Tolylamine (99.0%) was purchased from Aldrich and used as 

received. 
2. 5-Bromo-pyrimidine (97%) was purchased from Aldrich and used as 

received. 
3. Palladium (II) acetate (98%) was purchased from Aldrich and used as 

received. 
4. Ligand L-1 was prepared as described in Org. Synth. 2013, 90, 316–326. 
5. Anhydrous acetonitrile was purchased from Aldrich and used as 

received. 
6. N,N-Diisopropylethylamine (99.5%) was purchased from Aldrich and 

used as received. 
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7. The checkers observed an increase in pressure to 110 psi upon heating, 
followed by a decrease in pressure to 88 psi after approximately 90 min 
reaction time. The reaction pressure remained at 88 psi for the 
remainder of the reaction. 

8. The reaction mixture becomes darker at extended reaction times, 
making visualization of the subsequent phase separation difficult. The 
reaction is completed in approximately 4 h.  

9. Vacuum (25-50 mmHg) and water bath (60 °C) were used. Full removal 
of the tertiary amine is critical to the success of the salt formation. 
Successful removal of tertiary amine can be monitored by 1H NMR of 
the crude in d6-DMSO. 

10. 2-MeTHF (>99%) was purchased from Aldrich and used as received. 
11. The carbonylation generates significant amounts (~ 10-20%) of an 

impurity derived from the desired product: it is the imide in which two 
acyl-pyrimidine fragments are on the aniline nitrogen atom 
(C17H13N5O2, HRMS [M+H]+ calc 320.1142, found: 320.1141).  Treating 
the reaction mixture with 1M NaOH converts this material to additional 
product (plus pyrimidine carboxylic acid), increasing the isolated yield 
of 2. 

12. The filtration removes dark materials that obscure the phase separation. 
13. If an emulsion is observed at this stage, longer periods of settling may 

be required. 
14. If necessary, a spatula can be used to scrape some of the material off the 

inside wall of the flask. 
15. Fractions of 65 mL were collected. The desired free-base intermediate 

was collected in fractions 11–26. Rf = 0.4 (75% EtOAc in hexanes) 
visualized by UV irradiation. 

16. Some mixed fractions can be included as the product is further purified 
during salt formation. 

17. Methanesulfonic acid (99.5%) was purchased from Aldrich and used as 
received. 

18. The amount of methanesulfonic acid used (0.8 equiv) was determined 
based on the crude yield of the free-base. A second crop of product was 
obtained by a subsequent salt formation reaction using 0.2 equiv of 
MsOH. This process only produced an additional 2% of 2•MsOH (in 
decreased purity). 

19. The checkers observed an increase in internal temperature to 73 °C 
upon addition of MsOH. 
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20. Compound 2•MsOH exhibits the following analytical data: 1H NMR 
and 13C NMR spectra are reported relative to d6-DMSO (δ 2.50 ppm and 
δ 39.52 ppm, respectively). 1H NMR (20 mg solid in 0.6 mL d6-DMSO, 
500 MHz) δ: 2.28 (s, 3 H), 2.47 (s, 3 H), 7.17 (d, J = 8 Hz, 2 H), 7.63 (d, J = 
8 Hz, 2 H), 9.25 (s, 2 H), 9.34 (s, 1 H), 10.52 (s, 1 H), 10.94 (br s, 1 H); 
13C NMR (d6-DMSO, 126 MHz) δ: 20.6, 39.7, 120.4, 128.7, 129.2, 133.4, 
136.1, 156.2, 160.1, 162.0; IR (neat film, NaCl): 3411, 3278, 3111, 3034, 
2930, 1648, 1620, 1601, 1540, 1514, 1414, 1191, 1150, 1042, 1023.6, 918, 
823, 811, 697 cm-1; mp 209.6–210.1 °C; HRMS (FAB+) for free base 
C12H12N3O [M+H]+: calcd, 214.0980; found, 214.0987; Elem. Anal. calcd. 
for C13H15N3O4S: C, 50.48; H, 4.89; N, 13.58; found: C, 50.66; H, 4.87; 
N, 13.44. 

21. The checkers observed that the chemical shift of the broad singlet at 
10.94 ppm is dependent on the 1H NMR sample concentration (increases 
with concentration). 

22. On a half-scale run, the checkers isolated compound 2•MsOH in 76% 
yield. 

 
 
Working	
  with	
  Hazardous	
  Chemicals	
  
 

The procedures in Organic Syntheses are intended for use only by 
persons with proper training in experimental organic chemistry.  All 
hazardous materials should be handled using the standard procedures for 
work with chemicals described in references such as "Prudent Practices in 
the Laboratory" (The National Academies Press, Washington, D.C., 2011; 
the full text can be accessed free of charge at 
http://www.nap.edu/catalog.php?record_id=12654).  All chemical waste 
should be disposed of in accordance with local regulations.  For general 
guidelines for the management of chemical waste, see Chapter 8 of Prudent 
Practices.  

In some articles in Organic Syntheses, chemical-specific hazards are 
highlighted in red “Caution Notes” within a procedure.  It is important to 
recognize that the absence of a caution note does not imply that no 
significant hazards are associated with the chemicals involved in that 
procedure.  Prior to performing a reaction, a thorough risk assessment 
should be carried out that includes a review of the potential hazards 
associated with each chemical and experimental operation on the scale that 
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is planned for the procedure.  Guidelines for carrying out a risk assessment 
and for analyzing the hazards associated with chemicals can be found in 
Chapter 4 of Prudent Practices. 

The procedures described in Organic Syntheses are provided as 
published and are conducted at one's own risk.  Organic Syntheses, Inc., its 
Editors, and its Board of Directors do not warrant or guarantee the safety of 
individuals using these procedures and hereby disclaim any liability for any 
injuries or damages claimed to have resulted from or related in any way to 
the procedures herein. 
 
 
Discussion	
  
 

The direct palladium-catalyzed carbonylation of aryl halides in the 
presence of alcohols or amines is an efficient way to synthesize esters and 
amides, respectively.2  The synthesis of esters is relatively well precedented, 
whereas the amino carbonylation, which is of great importance for the 
synthesis of pharmaceuticals, remains a bigger challenge.  An early report 
by Heck3 used triphenylphosphine as ligand with aryl and vinyl bromides 
and later Milstein4 introduced di-isopropylphosphinopropane (dippp) for 
aryl chlorides. Buchwald reported more recently5 on the use of Xantphos for 
aryl bromides as well as for two examples of hetero aryl bromides. We 
demonstrated6 the amino carbonylation of hetero aryl bromides and iodides 
using the electron-rich ligand di-tert-butyl-phosphinoferrocene. The 
synthesis of this ligand is the subject of a preceding Organic Syntheses 
procedure.7 The ligand is isolated as the HBF4-salt (L-1). To our knowledge, 
this is the first example of gram scale aminocarbonylation that employs base 
hydrolysis of an imide by-product to increase the isolated yield. 
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Appendix	
  
Chemical	
  Abstracts	
  Nomenclature	
  (Registry	
  Number)	
  

 
Di-tert-butylphosphinoferrocene: Ferrocene, [bis(1,1-

dimethylethyl)phosphino]-; (223655-16-1) 
Palladium acetate: Acetic acid, palladium(2+) salt (2:1); (3375-31-3) 

p-Tolylamine: Benzenamine, 4-methyl-; (106-49-0) 
5-Bromo-pyrimidine: Pyrimidine, 5-bromo-; (4595-59-9) 

N,N-Diisopropylethylamine: N-Ethyl-N,N-diisopropylamine; (7087-68-5) 
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