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Caution!  

 
A. tert-Butyl ((4-(benzyloxy)phenyl)(phenylsulfonyl)methyl)carbamate (1).  

A 500-mL round-bottomed flask (29/32 neck) is equipped with a teflon-
coated, egg-shaped stir bar (30 x 16 mm). The flask is charged with 4-
benzyloxybenzaldehyde (10.0 g, 47.1 mmol, 1.2 equiv) and tert-butyl 
carbamate (4.60 g, 39.3 mmol, 1.0 equiv) (Note 1), then toluene (157 mL) 
(Note 2) is added, and the mixture is stirred until homogeneity is achieved. 
Benzenesulfinic acid sodium salt dihydrate (12.9 g, 64.4 mmol, 1.6 equiv) 
(Note 3) is introduced and then water (33 mL) is slowly added until the salt 
is completely dissolved. The flask is fitted with a rubber septum and an 
argon inlet needle. Formic acid (2.84 mL, 75.3 mmol, 2.0 equiv) (Note 4) is 
added, and the reaction is stirred for one week at room temperature (Note 
5) Figure 1). The suspension is filtered through a Büchner funnel 
(7 cm diameter), fitted with filter paper. The reaction flask is rinsed with 
ether (2 x 100 mL and 1 x 50 mL) (Note 6) and the solid is soaked with the 
rinsates (2 x 100 mL and 1 x 50 mL) at room temperature for 30 min (Note 
7). The suspension is stirred with a spatula every 5 min. Reduced pressure is 
used to facilitate the filtering process. The resulting crude product is  
 

   
Figure 1. Initial appearance of Step A, appearance after 44 h, and 
appearance after 1 week. 
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transferred to a 500 mL Erlenmeyer flask. Residual solid is washed from the 
filter with dichloromethane (50 mL) (Note 8). Additional dichloromethane 
(200 mL) is added, and the flask is stirred until the crude product is fully 
dissolved. The resulting solution is dried over MgSO4 (17.0 g) (Note 9), then 
filtered through a 350-mL fritted filter funnel into a pre-weighed 500-mL 
round-bottomed flask. The flask and the filter were rinsed with additional 
dichloromethane (2 x 50 mL). The dichloromethane solution is concentrated 
by rotary evaporation (40 °C, 23 mmHg) and further dried under vacuum 
(1-2 mmHg) for at least 10 h to leave 9.45–9.98 g of a white solid (Notes 
7 and 10). The solid is used in step B without further purification. 

B. (E)-tert-Butyl 4-(benzyloxy)benzylidenecarbamate (2). A 500-mL round-
bottomed flask (29/32 neck) is equipped with a teflon-coated, egg-shaped 
stir bar (30 x 16 mm) (Note 11), charged with K2CO3 (18.2 g, 131.7 mmol, 
6.0 equiv) and Na2SO4 (22.5 g, 158.3 mmol, 7.2 equiv) (Note 12). Sulfone (1) 
(9.97 g, 22.0 mmol) (Note 7) and THF (235 mL) (Note 13) were added. A 
condenser is attached to the reaction vessel, and the system is placed under 
an argon atmosphere. The reaction vessel is placed in an oil bath (85 °C), 
and heated to reflux for 3 h. The resulting mixture is cooled to room 
temperature (25 °C) and filtered through Celite® (1 inch layer) (Note 14) 
using a 350-mL fritted-filter funnel, washed with diethyl ether (2 x 100 mL) 
(Note 6) and additional diethyl ether (2 x 50 mL) is used to rinse residual 
material from the reaction vessel. The clear, colorless solution is collected in 
a pre-weighed 500-mL round-bottomed flask and concentrated by rotary 
evaporation (40 °C, 23 mmHg). The resulting product is further dried under 
vacuum (1-2 mmHg) to afford a white solid (6.80–6.94 g) (Note 15), which is 
used in step C without further purification (Note 16). 

C. tert-Butyl ((1R)-1-(4-(benzyloxy)phenyl)-2-bromo-2-nitroethyl)carbamate 
(3). A 250-mL round-bottomed flask (29/32 neck) equipped with a teflon-
coated, egg-shaped stir bar (30 x 16 mm) (Note 17), a rubber septum, and an 
argon inlet needle is charged with imine (2) (6.80 g, 21.9 mmol), toluene 
(120 mL) (Note 18), and (1R,2R)-N1,N2-bis[4-(1-pyrrolidinyl)-2-quinolinyl]- 
1,2-cyclohexanediamine, ((R,R)-PBAM) (0.54 g, 1.10 mmol, 0.05 equiv) 
(Note 19). The reaction vessel is placed under argon atmosphere and the 
solution is cooled to –20 °C (Note 20) followed by the addition of 
bromonitromethane (1.81 mL, 26.1 mmol, 1.2 equiv) (Note 21). The reaction 
mixture is stirred at –20 °C for 24 h and the resulting yellow-orange solution 
(Figure 2) is concentrated using rotary evaporation (40 °C, 23 mmHg).  

The product is redissolved in 50 mL of hot ethyl acetate (Note 22), 
filtered through a silica plug (Note 23), and washed with additional hot 
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ethyl acetate (3 x 100 mL) into a 1000-mL receiving flask. The resulting clear, 
light yellow solution is concentrated by rotary evaporation (40 °C, 
23 mmHg) and is dried under vacuum (1-2 mmHg) for 1 h. The resulting 
white solid is then transferred to a 50-mL Erlenmeyer flask and redissolved 
 

  
Figure 2. Appearance of Step C after 24 h. 

 
in hot ethyl acetate (ca. 30 mL). The solution is allowed to slowly cool to 
room temperature before it is placed in an ice-water bath. After 1 h the 
resulting crystals were vacuum filtered through a Büchner funnel (5 cm 
diameter). The crystallized product is washed with ice-cold ethyl acetate on 
the filter. The mother liquor and crystal washings were concentrated and 
subjected to the same recrystallization procedure twice to obtain additional 
product. The solid is transferred to a 100-mL round-bottomed flask and 
dried under vacuum (1-2 mmHg) to leave the product 3 as a 1.2:1 mixture of 
diastereoisomers (6.26–7.52 g, 34–40% overall yield) (Notes 25). 
 
 

 
1. 4-Benzyloxyaldehyde (98%) was purchased from Alfa Aesar and tert-

butyl carbamate (98%) was purchased from Sigma-Aldrich. 
2. 
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3. Benzenesulfinic acid sodium salt dihydrate (97%) was purchased from 
Alfa Aesar. Benzene acid sodium salt anhydrous (Sigma Aldrich, 
123579) also can be used with similar results. 

4. Formic acid (≥95%) was purchased from Sigma-Aldrich.  
5. A clear, pale yellow mixture was observed after addition of all reagents, 

and the product started to precipitate as a white solid after 1-2 h. By the 
second day, a thick white slurry of the product was formed. 

6. Ethyl ether (99.9%) was purchased from Fisher Scientific Company and 
used as received. 

7. The checkers observed more residual aldehyde (11-22%) than the 
submitters (<3%) by 1H-NMR of the crude reaction mixture. The 
submitters note that the suflone is insoluble in ether, allowing fresh 
ether to be used to thoroughly soak and wash the solid during the 
filtration process. 

8. Dichloromethane (99.9%) was purchased from Fisher Scientific 
Company and used as received. 

9. Magnesium sulfate was purchased from Fisher Scientific Company and 
used as received. 

10. Data of product 1: Rf = 0.46 (30% EtOAc/hexanes); 1H NMR (400 MHz, 
CDCl3) δ: 1.25 (s, 9H), 5.09 (s, 2H), 5.74 (d, J = 10.6 Hz, 1H), 5.88 (d, J = 
10.0 Hz, 1H), 7.01 (d, J = 8.8 Hz, 2H), 7.31–7.43 (m, 7H), 7.52 (m, 2H), 
7.63 (t, J = 7.4 Hz, 1H), 7.91 (d, J = 7.6 Hz, 2H); 13C NMR (101 MHz, 
CDCl3) δ: 28.0, 70.1, 73.5, 81.2, 115.2, 122.0, 124.9, 127.4, 128.1, 128.6, 
129.0, 129.4, 130.2, 133.8, 136.5, 137.0, 153.5, 160.0. 

11. The apparatus with the salts was flame dried under reduced pressure 
(1-2 mmHg) and was allowed to cool to room temperature.  

12. Potassium carbonate and sodium sulfate were purchased from Sigma-
Aldrich and used as received. 

13. Tetrahydrofuran (THF) was dried by passage through a column of 
activated alumina as described by Grubbs.  

14. Celite was purchased from Sigma-Aldrich and used as received.  
15. The imine product was stored in a –78 °C freezer. 1H NMR (400 MHz, 

CDCl3) δ: 1.59 (s, 9H), 5.13 (s, 2H), 7.04 (d, J = 9.0 Hz, 2H), 7.33–7.37 (m, 
1H), 7.40–7.42 (m, 4H), 7.89 (d, J = 8.8 Hz, 2H), 8.89 (s, 1H); 13C NMR 
(101 MHz, CDCl3) δ: 27.9, 70.2, 81.9, 115.2, 127.1, 127.5, 128.2, 128.7, 
132.5, 136.0, 162.8, 163.3, 169.6;  IR (CH2Cl2): 1698, 1507, 1496, 1455, 1366, 
1236, 1162, 1016, 881, 830, 735, 696 cm-1. HRMS (ESI): Exact mass calcd 
for C19H22NO3 [M+H]+ 312.1594, found 312.1598. 
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16. The material was used as a reactant to prepare 3 and contained 3-16% of 
4-benzyloxybenzaldehyde. 

17. The flask was flame dried under reduced pressure (1-2 mmHg) and was 
allowed to cool to room temperature. 

18. Toluene was dried by passage through a column of activated alumina 
as described by Grubbs.2 

19. (R,R)-PBAM was prepared according to a published procedure.  
20. The reaction was cooled using a cryostat (at –20 °C) with an isopropanol 

bath. 
21. Bromonitromethane (90%, tech.) was purchased from Sigma-Aldrich 

and used as received. 
22. Ethyl acetate (99.9%) was purchased from Fisher Scientific Company 

and used as received. 
23. A 350-mL fritted-glass funnel was packed with Celite® (1 inch layer) 

and silica gel (50 g). 
24. A sample of racemic 3 can be prepared by stirring the imine and 

bromonitromethane in toluene with DMAP (10 mol%) for 10 min at 
room temperature, followed by its filtration through silica gel. 

25. 
, by chiral HPLC analysis 

(Chiralcel AD-H, 20% iPrOH/hexanes, 1 mL/min, tr(d1e1, major) = 15.6 
min, tr(d1e2, minor) = 19.33 min, tr(d2e2, minor) = 20.4 min), tr(d2e1, major) 
= 26.1 min. Rf = 0.38 (20% EtOAc/hexanes); mp = 149–151 °C; Rf = 0.38 
(20% EtOAc/hexanes); IR (film) 3359, 1687, 1561, 1509, 1352, 1251, 1162, 
1039, 1027, 834, 736 cm-1; 1H NMR (400 MHz, CDCl3, 1.2:1 mixture of 
diastereomers) δ: 1.45 (s, 9H), 1.46 (s, 9H), 5.05 (s, 2H), 5.06 (s, 2H), 5.38 
(d, J = 9.2 Hz, 1H), 5.42 (br s, 1H), 5.57 (dd, J = 8.9 and 4.3 Hz, 1H), 5.68 
(br s, 1H), 6.27 (d, J = 2.5 Hz, 1H), 6.31 (d, J = 4.1 Hz, 1H), 6.96 (m, 2H), 
6.99 (m, 2H), 7.21 (d, J = 8.6 Hz, 2H), 7.24 (d, J = 8.6 Hz, 2H), 7.31–7.45 
(m, 10H); 13C NMR (101 MHz, CDCl3) δ: 28.1, 28.2, 57.6, 57.8, 70.1 (2C), 
81.0, 81.1, 82.0 (2C), 85.1, 115.2, 115.3, 126.8 (2C), 127.4 (2C), 128.1 (2C), 
128.2 (2C), 128.3 (2C), 128.7 (2C), 136.5 (2C), 154.4, 154.7, 159.2, 159.3; 
HRMS (ESI): Exact mass calcd for C20H23BrN2NaO5 [M+Na]+ 473.0683, 
found 473.0685; Anal. calcd. for C20H23BrN2O5: C, 53.23; H, 5.14; N, 6.21; 
found: C, 53.04; H, 5.17; N, 6.13.  
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The procedures in Organic Syntheses are intended for use only by 

persons with proper training in experimental organic chemistry.  All 
hazardous materials should be handled using the standard procedures for 
work with chemicals described in references such as "Prudent Practices in 
the Laboratory" (The National Academies Press, Washington, D.C., 2011; 
the full text can be accessed free of charge at 
http://www.nap.edu/catalog.php?record_id=12654).  All chemical waste 
should be disposed of in accordance with local regulations.  For general 
guidelines for the management of chemical waste, see Chapter 8 of Prudent 
Practices.  

In some articles in Organic Syntheses, chemical-specific hazards are 
highlighted in red “Caution Notes” within a procedure.  It is important to 
recognize that the absence of a caution note does not imply that no 
significant hazards are associated with the chemicals involved in that 
procedure.  Prior to performing a reaction, a thorough risk assessment 
should be carried out that includes a review of the potential hazards 
associated with each chemical and experimental operation on the scale that 
is planned for the procedure.  Guidelines for carrying out a risk assessment 
and for analyzing the hazards associated with chemicals can be found in 
Chapter 4 of Prudent Practices. 

The procedures described in Organic Syntheses are provided as 
published and are conducted at one's own risk.  Organic Syntheses, Inc., its 
Editors, and its Board of Directors do not warrant or guarantee the safety of 
individuals using these procedures and hereby disclaim any liability for any 
injuries or damages claimed to have resulted from or related in any way to 
the procedures herein. 
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Scheme 1. Use of an Umpolung Amide Synthesis reaction (UmAS) to 
homologate with a para-hydroxyl phenyl glycine residue (Hpg) using 3.
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((R,R)-PBAM): (1R,2R)-N1,N2-bis[4-(1-pyrrolidinyl)-2-quinolinyl]- 1,2-
cyclohexanediamine; (1214287-91-8)
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