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Procedure	(Note	1)	

A. N-Benzylidene-p-toluenesulfinamide (1). An oven-dried, 100 mL one-
necked round-bottomed flask is charged with a Teflon-coated magnetic stir 
bar (2.5 x 0.5 cm), p-toluenesulfinamide (5.00 g, 32.2 mmol) (Note 2), 4Å
molecular sieves (6.5 g) (Note 3), dichloromethane (40 mL) (Note 4), 
benzaldehyde (3.42 g, 3.3 mL, 32.2 mmol) (Note 5), and pyrrolidine (230 mg, 
265 µL, 3.22 mmol) (Note 6). The flask is connected to a reflux condenser 
fitted with a calcium sulfate-filled drying tube (30 g) (Note 7) and heated to 
60 ºC (Figure 1). The mixture is stirred at 500 rpm for 5 h, resulting in a 
brown heterogeneous suspension (Note 8) (Figure 2). The reaction is 
allowed to cool to room temperature and diluted by addition of EtOAc (50 
mL). The mixture is filtered through a pad of silica gel (Note 9) and washed 
with EtOAc (3 x 50 mL). The filtrate is concentrated under reduced pressure 
using a rotary evaporator (25 ºC, 30 mmHg) to give a white solid. The solid 
is washed with hexane (20 mL) and collected via vacuum filtration into a
100 mL ceramic Buchner funnel equipped with filter paper of moderate 
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porosity to yield 6.31–6.40 g (81–82%) of N-benzylidene-p-
toluenesulfinamide (1) as a white crystalline solid (Note 10) (Figure 3). 

Figure 1. Reaction apparatus 

Figure 2. Reaction mixture heated to 60 ºC 
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Figure 3. Product (1) as a white solid 

 
 
Notes	
 
1. Prior to performing each reaction, a thorough hazard analysis and risk 

assessment should be carried out with regard to each chemical 
substance and experimental operation on the scale planned and in the 
context of the laboratory where the procedures will be carried out. 
Guidelines for carrying out risk assessments and for analyzing the 
hazards associated with chemicals can be found in references such as 
Chapter 4 of “Prudent Practices in the Laboratory" (The National 
Academies Press, Washington, D.C., 2011; the full text can be accessed 
free of charge at https://www.nap.edu/catalog/12654/prudent-
practices-in-the-laboratory-handling-and-management-of-chemical). 
See also “Identifying and Evaluating Hazards in Research Laboratories” 
(American Chemical Society, 2015) which is available via the associated 
website “Hazard Assessment in Research Laboratories” at 
https://www.acs.org/content/acs/en/about/governance/committees
/chemicalsafety/hazard-assessment.html. In the case of this procedure, 
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the risk assessment should include (but not necessarily be limited to) an 
evaluation of the potential hazards associated with p-toluene 
sulfonamide, calcium sulfate, dichloromethane, benzaldehyde,  
molecular sieves, and pyrrolidine. 

2. Both enantiomerically pure forms of p-toluenesulfinamide are available
from Sigma Aldrich Chemical Co. However, the racemic material was
best prepared at a much lower cost according to a known procedure.2

(S)-(+)-p-Toluenesulfinamide (98 %, Sigma Aldrich Chemical Co) was
used by the checkers.

3. 4Å Molecular sieves (1.6 mm of particle size) were purchased from
Sigma Aldrich Chemical Co. and activated by drying in a vacuum oven
at 220 °C for 24 h. The submitters activated 4Å Molecular sieves (1.6-2.5
mm of particle size), purchased from Carlo Erba (ref. P1820017), by
using microwaves (700W, 3 x 30 s) and subsequent cycles of
vacuum/argon.

4. Dichloromethane (anhydrous, ≥99.8%, contains 40-150 ppm amylene as
stabilizer) was purchased from Sigma Aldrich Chemical Co. (ref.
270997) and stored over activated 4Å molecular sieves.

5. Benzaldehyde (purified by redistillation, ≥99.5%) was purchased from
Sigma Aldrich Chemical Co. and used as received.

6. Pyrrolidine
(http://www.sigmaaldrich.com/catalog/product/sial/83240 puriss.
p.a., ≥99.0%) was purchased from Sigma Aldrich Chemical Co. and
used as received.

7. Calcium sulfate (DrieriteTM) was used by the checkers.  The submitters
used calcium chloride (irregular granules, purissimum, 95%) purchased
from Panreac and used as received. The drying tube contained cotton
wool as stopper.

8. The reaction was monitored by TLC on silica gel using
cyclohexane:EtOAc (4:1) as eluent and visualization with UV light.
Benzaldehyde had Rf= 0.60, p-toluenesulfinamide had Rf= 0.04 and the
final product 1 had Rf= 0.43.

9. Filtration was carried out in a medium porosity 200 mL filter funnel
with a 6 cm I.D. charged with 30 g of silica gel (40-63 μ m) that was
purchased from Merck and used as received.

10. Physical and spectroscopic characteristics of N-benzylidene-p-
toluenesulfinamide (1): White solid, mp: 72–74 ºC (lit.3 mp: 73–75 ºC). 1H
NMR (400 MHz, CDCl3) d: 0.36 (s, 3H), 7.28 (d, J = 8.1 Hz, 2H), 7.38–7.49
(m, 3H), 7.62 (d, J = 8.1 Hz, 2H), 7.82 (d, J = 6.8 Hz, 2H), 8.74 (s, 1H)
ppm; 13C NMR (100 MHz, CDCl3) d: 21.5, 124.8, 128.9, 129.6, 129.9, 132.6,
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133.9, 141.7, 141.8, 160.7 ppm. MS (ES+): m/z (%): 266 ([M+Na]+, 78), 244 
([M+H]+, 100). HRMS: Found: 244.0794 (–1.4 ppm); C14H14NOS [M+H]+ 
requires 244.0796. The purity of the product was determined using 
quantitative NMR: A mixture of 21.0 mg of 1 and 17.9 mg of 1,3,5-
trimethoxybenzene (99%, purchased from Sigma Aldrich Chemical Co. 
and used as received) was dissolved in 0.6 mL of CDCl3. 1H NMR 
(300 MHz) gave a product purity of 100%. 

 
 
Working	with	Hazardous	Chemicals	
 

The procedures in Organic Syntheses are intended for use only by 
persons with proper training in experimental organic chemistry.  All 
hazardous materials should be handled using the standard procedures for 
work with chemicals described in references such as "Prudent Practices in 
the Laboratory" (The National Academies Press, Washington, D.C., 2011; 
the full text can be accessed free of charge at 
http://www.nap.edu/catalog.php?record_id=12654).  All chemical waste 
should be disposed of in accordance with local regulations.  For general 
guidelines for the management of chemical waste, see Chapter 8 of Prudent 
Practices.  

In some articles in Organic Syntheses, chemical-specific hazards are 
highlighted in red “Caution Notes” within a procedure.  It is important to 
recognize that the absence of a caution note does not imply that no 
significant hazards are associated with the chemicals involved in that 
procedure.  Prior to performing a reaction, a thorough risk assessment 
should be carried out that includes a review of the potential hazards 
associated with each chemical and experimental operation on the scale that 
is planned for the procedure.  Guidelines for carrying out a risk assessment 
and for analyzing the hazards associated with chemicals can be found in 
Chapter 4 of Prudent Practices. 

The procedures described in Organic Syntheses are provided as 
published and are conducted at one's own risk.  Organic Syntheses, Inc., its 
Editors, and its Board of Directors do not warrant or guarantee the safety of 
individuals using these procedures and hereby disclaim any liability for any 
injuries or damages claimed to have resulted from or related in any way to 
the procedures herein. 
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Discussion	
 

N-Sulfinyl imines4 are valuable intermediates for the synthesis of a wide 
range of nitrogen-containing molecules, due to the presence of an electron-
withdrawing group on the nitrogen atom that significantly enhances the 
electrophilicity of the C=N bond. Moreover, the chiral nature of the sulfinyl 
moiety allows the access to enantiomerically enriched amines, usually 
achieving a high degree of stereocontrol.5 The preparation of N-sulfinyl 
imines typically occurs through the direct condensation of carbonyl 
compounds with sulfinamides. However, the low reactivity of the latter 
reagents requires somewhat harsh reaction conditions that involves 
activation of the carbonyl group with Lewis acids and/or the use of 
dehydrating agents.6 Therefore, the development of milder, more 
sustainable synthetic protocols is of great interest. 

We recently described an unprecedented aminocatalytic method for the 
synthesis of several classes of imines that consists of the activation of the 
carbonyl compound through the formation of an iminium ion using a 
secondary amine in a catalytic amount.7 In the case of N-sulfinyl imines, the 
best results were achieved employing equimolecular amounts of both 
reactants and 10 mol % of pyrrolidine in the presence of 4Å molecular 
sieves as water scavenger. This procedure was applied to differently 
substituted aromatic, heteroaromatic and unsaturated aldehydes, as well as 
ethyl glyoxylate, and using both p-toluene- or t-butylsulfinamides in 
racemic form (Table 1). Thus prepared N-sulfinyl imines were obtained in 
similar or higher yields compared to previously reported procedures,2a,7,8 
after a simple filtration through a short pad of silica with no need of further 
purification steps. This process was also tested with enantiomerically pure 
sulfinamides, proving that the reaction conditions did not affect the 
stereochemical integrity at the sulfur atom. 
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Table 1. Scope of the preparation of N-sulfinyl imines 

 
 

entry R1 R2 reaction time (h) yield (%) 
1 4-NO2C6H4 Tol 2.5 93 
2 4-MeOC6H4 Tol 2.0 96 
3 4-CNC6H4 Tol 4.0 92 
4 4-ClC6H4 Tol 3.0 95 
5 2-NO2C6H4 Tol 5.0 90 
6 2-HOC6H4 Tol 3.0 89 
7 2-BrC6H4 Tol 4.0 96 
8 2-MeOC6H4 Tol 3.0 99 
9 3-MeOC6H4 Tol 3.0 91 

10 2-naphthyl Tol 4.0 90 
11 2-pyridyl Tol 4.0 88 
12 2-pyrrolyl Tol 4.0 91 
13 2-methylindolyl Tol 8.0 70 
14 5-nitrothiophenyl Tol 4.0 90 
15 PhCH=CH Tol 4.0 99 
16 4-NO2C6H4CH=CH Tol 3.0 97 
17 4-MeOC6H4CH=CH Tol 3.5 88 
18 2-MeOC6H4CH=CH Tol 3.5 98 
19 EtO2C Tol 5.0 93 
20 Ph t-Bu 4.0 99 
21 4-NO2C6H4 t-Bu 4.0 91 
22 4-MeOC6H4 t-Bu 4.0 99 

 
Current preparation methods for the parent N-sulfonyl imines2a,9,10 have 

to deal with their lower stability towards hydrolysis, and hence the reaction 
conditions may not be compatible with the structural integrity of the final 
compounds. In this case, our organocatalytic method proceeded in 
analogous manner, although longer reaction times (24 h) were required, and 
in most cases a slight excess of aldehyde was employed (Table 2). The 
corresponding N-sulfonyl imines were isolated in high yields after filtration 
through celite instead of silica. 
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Table 2. Scope of the preparation of N-sulfonyl imines 

 
 

entry R1 R2 yield (%) 
1 4-NO2C6H4 Tol 87 
2 4-MeOC6H4 Tol 97 
3 4-CNC6H4 Tol 95 
4 2-MeOC6H4 Tol 86 
5 PhCH=CH Tol 99 
6 4-NO2C6H4CH=CH Tol 98 
7 4-MeOC6H4CH=CH Tol 92 
8 2,4-(MeO)2C6H3 Tol 86 
9 3,4,5-(MeO)3C6H2 Tol 83 

10 Ph t-Bu 96 
 
 
This efficient, inexpensive, simple, and sustainable method has been 

extended to other classes of C=N bond-containing molecules achieving 
comparable results. These include N-alkyl, N-aryl and N-phosphinoyl 
imines,7 nitrones,11 oximes and hydrazones.12 
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Appendix	
Chemical	Abstracts	Nomenclature	(Registry	Number)	

 
Benzaldehyde; (100-52-7) 

p-Toluenesulfinamide: Benzenesulfinamide, 4-methyl-; (6873-55-8) 
Pyrrolidine; (123-75-1) 

N-Benzylidene-p-toluenesulfinamide: Benzenesulfinamide, 4-methyl-N-
(phenylmethylene)-; (66883-56-5) 

p-Toluenesulfonamide: Benzenesulfonamide, 4-methyl-; (70-55-3) 
N-Benzylidene-p-toluenesulfonamide: Benzenesulfonamide, 4-methyl-N-

(phenylmethylene)-; (13707-41-0) 
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