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Procedure	(Note	1)	
 

A. 4-(3,4-Dimethoxyphenyl)butanoyl chloride (2). An oven-dried, 250-mL, 
three-necked, 14/20 round-bottomed flask is equipped with an egg-shaped 
magnetic stir bar (2 cm), a pressure-equalizing addition funnel (25 mL), a 
rubber septum, and an argon inlet (Figure 1). The flask is charged with 4-
(3,4-dimethoxyphenyl)butanoic acid (1) (7.25 g, 32.3 mmol, 1.0 equiv) (Note 
2), anhydrous DCM (40 mL) (Note 3) and DMF (50. µL, 0.65 mmol, 
0.02 equiv) (Note 4). Oxalyl chloride (5.5 mL, 64 mmol, 2.0 equiv) (Note 5) is 
added via syringe to the addition funnel, and the stopcock is opened such 
that the oxalyl chloride is added over 4 min, resulting in effervescence. The 
reaction mixture is stirred at 23 °C for 30 min from the start of the addition 
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of oxalyl chloride (Note 6). The argon inlet is replaced with a rubber 
septum, the addition funnel is removed, and the flask placed on a rotary 
evaporator. Concentration under reduced pressure (35 °C, 30 mm Hg) 
afforded 8.35 g of crude acid chloride (2) as a yellow oil (Note 7 and 8), 
which is used in the next step without purification. 

 

 
Figure 1. Left to right: reaction assembly for Step A, reaction appearance 

for Step A (photos provided by submitters) 
 

B. 6,7-Dimethoxy-3,4-dihydronaphthalen-1(2H)-one (3).  An oven-dried, 
100-mL, three-necked, 14/20 round-bottomed flask is equipped with an 
egg-shaped magnetic stir bar (2 cm), a water condenser, a thermocouple, 
and an argon inlet. Hexafluoroisopropanol (HFIP) (17 mL, 162 mmol, 
5.0 equiv) (Note 9) is added.  To this three-necked flask is charged a solution 
of acid chloride (2) in 3 mL of dichloroethane (Note 10) via plastic syringe at 
a rate that maintains the internal temperature below 35 °C. The reaction is 
allowed to cool and stirred at 23 °C for 2 h (Note 11). The stir bar is removed 
and rinsed with HFIP (1.0 mL) and the mixture is concentrated using a 
rotary evaporator (45 °C, 30 mmHg) to afford a dark brown oil (Figure 2), 
which is further dried for 15 min at 0.5 mmHg. The crude product is 
dissolved in DCM (50 mL) (Note 12), transferred to a 250-mL  
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Figure 2. Reaction appearance following Step B 

 
separatory funnel, and washed with saturated, aqueous sodium bicarbonate 
(2 × 50 mL) and brine (50 mL). The combined aqueous layers are extracted 
with DCM (75 mL) and the combined organic layers dried over 31 g of 
Na2SO4 (20 min) and gravity-filtered through a 185 mm Whatman 
qualitative circle into a 500 mL, single-necked, 24/40 round-bottomed flask. 
The flask and the Na2SO4 are washed with additional DCM (3 × 20 mL). 
Celite (13.6 g) (Note 13) is added to the flask and the mixture is 
concentrated (40 °C, 160 mmHg). In a 150-mL, coarse-fritted Büchner funnel 
with a 24/40 lower vacuum assembly with an attached 250-mL round-
bottomed flask, 28 g of sand is layered over the frit followed by a slurry of 
25 g of silica gel (Note 14) and hexanes (50 mL). Additional hexanes (50 mL) 
is used to rinse leftover silica gel into the funnel.  After allowing the slurry 
to settle (2 min), the dry-loaded product is added. At this stage, the 250-mL 
flask is switched with a 500-mL flask and 150 mL of hexanes followed by 
100 mL of 9:1 hexanes:EtOAc (Note 15) are added and pulled through with 
house vacuum (Note 16) such that the solvent level does not fall below the 
top of the Celite. The 500-mL flask is switched with a 1-L round-bottomed 
flask and 200 mL of 4:1 hexanes:EtOAc followed by 500 mL of 
7:3 hexanes:EtOAc are run through the silica in the same fashion as before. 
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The filtrate from the 500-mL flask is discarded and the filtrate from the 1-L 
round bottom flask is concentrated by rotary evaporator (40 °C, 30 mmHg). 
The resulting white solid is scraped out of this flask and transferred to a 
250-mL round-bottomed flask. The 1-L flask is rinsed with EtOAc 
(3 × 30 mL) into the 250-mL flask and the solution concentrated (40 °C, 
80 mmHg) resulting in 6.4 g of pink solid (Note 17). The flask is allowed to 
stand overnight (17 h), at which time isopropanol (22 mL) (Note 18) is 
added to the flask. The mixture is heated and swirled every 25 sec (Note 19) 
to dissolve the solid. Once the solvent vapor condensate reaches the 
opening of the flask (2 min), the flask is removed from heat and covered 
with a laboratory wipe secured with a rubber band. After cooling to 23 °C 
and sitting overnight (24 h), the supernatant is decanted, and the crystals 
washed with –20 °C isopropanol (6 mL) (Note 20) and dried overnight 
under vacuum (0.5 mm Hg) to afford the product as light pink crystals 
(5.23 g, 78%) (Notes 21, 22, and 23) (Figure 3).  

 

 
Figure 3. Left to right: Filtration setup after filtration, appearance of 

product before recrystallization, and appearance of product after 
recrystallization (photos provided by Submitters) 

 
Notes1 

 
1. Prior to performing each reaction, a thorough hazard analysis and risk 

assessment should be carried out with regard to each chemical 
substance and experimental operation on the scale planned and in the 
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context of the laboratory where the procedures will be carried out. 
Guidelines for carrying out risk assessments and for analyzing the 
hazards associated with chemicals can be found in references such as 
Chapter 4 of "Prudent Practices in the Laboratory" (The National 
Academies Press, Washington, D.C., 2011; the full text can be accessed 
free of charge at https://www.nap.edu/catalog/12654/prudent-
practices-in-the-laboratory-handling-and-management-of-chemical). 
See also "Identifying and Evaluating Hazards in Research Laboratories" 
(American Chemical Society, 2015) which is available via the associated 
website "Hazard Assessment in Research Laboratories" at 
https://www.acs.org/content/acs/en/about/governance/committees
/chemicalsafety/hazard-assessment.html. In the case of this procedure, 
the risk assessment should include (but not necessarily be limited to) an 
evaluation of the potential hazards associated with 4-(3,4-
dimethoxyphenyl)butanoic acid, dichloromethane, oxalyl chloride, 
dimethylformamide, HFIP, celite, silica gel, hexanes, EtOAc, and 
isopropanol. 

2. 4-(3,4-Dimethoxyphenyl)butanoic acid (1) (99%) was purchased from 
Sigma–Aldrich and used as received. 

3. Anhydrous DCM was purchased from Alfa Aesar (99.7+ %, packaged 
under argon in resealable ChemSeal bottles, stabilized with amylene) 
and used as received.  

4. N,N-Dimethylformamide (99.8%) was purchased from Sigma–Aldrich 
and used as received. 

5. Oxalyl chloride (98%) was purchased from Beantown Chemical and is 
used as received. CAUTION: Oxalyl chloride is irritating, toxic, and 
prone to release gas when used in a chemical reaction. 

6. TLC analysis is performed with silica gel plates (10 × 20 cm, glass 
backed, purchased from Miles Scientific) with EtOAc–hexanes (1:1) and 
visualized using a 254 nm UV lamp. The acid chloride (2) is converted 
to the corresponding methyl ester for analysis purposes by dissolving a 
small aliquot in methanol prior to TLC. 4-(3,4-
Dimethoxyphenyl)butanoic acid (1) Rf = 0.29, methyl 4-(3,4-
dimethoxyphenyl)butanoate (from acid chloride) Rf = 0.57. In the latter 
case, the acid chloride hydrolyzes on the TLC plate to yield acid. 

7.  A second reaction on identical scale provided 8.67 g of the same 
product. The excess mass over the theoretical yield is attributed to 
leftover DCM not removed by rotary evaporation. 
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8. 1H NMR (500 MHz, CDCl3) d:  2.04 (m, 2H), 2.66 (t, J = 7.5 Hz, 2H), 
2.91 (t, J = 7.2 Hz, 2H), 3.89 (s, 3H), 3.90 (s, 3H), 6.70 (d, J = 2.0 Hz, 1H), 
6.73 (br d, J = 7.9 Hz, 1H), 6.83 (d, J = 8.0 Hz, 1H); 13C NMR (125 MHz, 
CDCl3) d: 26.7, 33.9, 46.2, 55.8, 55.9, 111.4, 111.7, 120.3, 132.9, 147.6, 149.1, 
173.7. 

9. Hexafluoroisopropanol was purchased from Oakwood Products, Inc. 
(>99%) and used as received (bp = 59 °C). 

10. Dichloroethane was purchased from Sigma–Aldrich (99%) and used as 
received.  

11. TLC analysis was performed with silica gel plates (10 × 20 cm, glass 
backed, purchased from Miles Scientific) with EtOAc–hexanes (1:1) and 
visualized with a 254 nm UV lamp. Ketone (3) Rf = 0.43. 

12. DCM was purchased as a 19-L drum from BDH and used as received. 
13. Celite (545) was purchased from Sigma–Aldrich and used as received. 
14. Silica gel was purchased from SiliCycle (P60, 230–400 mesh) and used as 

received. 
15. Hexanes and EtOAc were purchased in 19-L drums from BDH and used 

as received. 
16. The vacuum measured 260 mmHg; care was taken to ensure solvent 

level remained above the Celite. 
17. The solid is initially white after concentration, but during the time it 

takes to transfer the solid and measure its mass, the solid turns pink. 
The melting point of this solid was 98–100 °C. 

18. Isopropanol was purchased in a 19-L drum from BDH and used as 
received. 

19. Appropriate PPE was worn (insulated glove) when handling hot 
glassware.  The solution was heated either by a heat gun or by an 
aluminum block set to 160 °C.  Care was taken to avoid spilling 
isopropanol. 

20. Isopropanol was placed in a –20 °C freezer in a covered Erlenmeyer 
flask for at least 1 h to chill before being used in this step. 

21. A second run performed on the same scale yielded 5.15 g.  
22. Physical properties and spectroscopic analysis of 3: mp 99–101 °C 

(lit.2 mp 98–100 °C). IR (powder) 2029, 1660, 1597, 1505, 1255, 1220 cm-1; 
1H NMR (500 MHz, CDCl3) d : 2.14 (m, 2H), 2.62 (t, J = 6.5 Hz, 2H), 
2.91 (t, J = 6.1 Hz, 2H), 3.93 (s, 3H), 3.95 (s, 3H), 6.69 (s, 1H), 7.54 (s, 1H); 
13C NMR (125 MHz, CDCl3) d : 23.5, 29.3, 38.4, 55.8, 55.9, 108.4, 110.1, 
125.7, 139.2, 147.8, 153.4, 197.1; HRMS (ESI) m/z calcd. for C12H15O3 
[M+H]+ 207.1021, found 207.1017.  
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23. Purity was measured at 99% by quantitative NMR using or 
trimethoxybenzene as the standard. The compound is bench stable in 
open air. 

	
Working	with	Hazardous	Chemicals	
 

The procedures in Organic Syntheses are intended for use only by 
persons with proper training in experimental organic chemistry.  All 
hazardous materials should be handled using the standard procedures for 
work with chemicals described in references such as "Prudent Practices in 
the Laboratory" (The National Academies Press, Washington, D.C., 2011; 
the full text can be accessed free of charge at 
http://www.nap.edu/catalog.php?record_id=12654).  All chemical waste 
should be disposed of in accordance with local regulations.  For general 
guidelines for the management of chemical waste, see Chapter 8 of Prudent 
Practices.  

In some articles in Organic Syntheses, chemical-specific hazards are 
highlighted in red “Caution Notes” within a procedure.  It is important to 
recognize that the absence of a caution note does not imply that no 
significant hazards are associated with the chemicals involved in that 
procedure.  Prior to performing a reaction, a thorough risk assessment 
should be carried out that includes a review of the potential hazards 
associated with each chemical and experimental operation on the scale that 
is planned for the procedure.  Guidelines for carrying out a risk assessment 
and for analyzing the hazards associated with chemicals can be found in 
Chapter 4 of Prudent Practices. 

The procedures described in Organic Syntheses are provided as 
published and are conducted at one's own risk.  Organic Syntheses, Inc., its 
Editors, and its Board of Directors do not warrant or guarantee the safety of 
individuals using these procedures and hereby disclaim any liability for any 
injuries or damages claimed to have resulted from or related in any way to 
the procedures herein. 
	
Discussion	
 

The Friedel–Crafts acylation is a storied and often-used procedure for 
preparing aromatic ketones; accordingly, a very extensive bibliography and 
review literature is available for this reaction.3 Classically, the reaction is 
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promoted by acids such as AlCl3, FeCl3, SnCl4 or H2SO4, generally requiring 
a stoichiometric amount of catalyst for full conversion due to complex 
formation between ketone products and Lewis acid catalysts, resulting in 
product inhibition. In such cases, the reactions entail an aqueous workup 
and produce metal-containing acidic waste streams. More recent methods 
use sub-stoichiometric, including heterogenous, catalysts.3f,4 An important 
early example was Kobayashi's conditions of Hf(OTf)4 in LiClO4–
nitromethane;5 indeed, numerous examples employ ionic liquids and other 
unconventional media.6 Another general approach is to modify the 
substrate, with a great deal of effort devoted to the study of highly 
electrophilic acylating agents as reaction partners.7  

Here, we provide a detailed procedure for an intramolecular Friedel–
Crafts acylation reaction that is notable for its simplicity: the substrate is 
merely dissolved in HFIP solvent at room temperature or below.8 Following 
reaction, the workup consists of an aqueous wash to remove residual acid 
followed by removal of solvent under reduced pressure and purification of 
the product by appropriate means. This differs from the traditional reaction 
insofar as no aqueous metal waste streams are generated. Other workers 
have also reported the use of HFIP under similar conditions for Friedel–
Crafts alkylation reactions.9 

The mechanism of this variant of the Friedel–Crafts reaction is not 
known, but preliminary experiments have ruled out the possible 
intermediacy of an HFIP ester derived from the acyl chloride.8 HFIP 
chemistry is often dominated by its strong hydrogen bonding potential10 
and any reasonable mechanism likely involves HFIP H-bonding to the acyl 
chloride. This could lead to formation of an acylium ion in a process 
reminiscent of the textbook mechanism for AlCl3-promoted Friedel–Crafts 
reaction but direct addition of the arene is not out of the question. It has not 
been possible to distinguish between these possibilities, but it is worth 
mentioning that we have not been able to identify any reaction 
intermediates using in situ infrared spectroscopy.  

Electron-rich arenes and heteroarenes worked well under these 
conditions (Table 1). In general, six- and seven-membered cyclic ketones 
were obtained in good yields but five-membered cyclic ketones proved 
more challenging (entries 18-20). Substrates without electron-donating 
groups on them resulted in lower yields (entries 8 and 12), and these 
reaction conditions do not succeed on electron-poor substrates. In cases 
where multiples isomers are possible, only one is formed (entries 1, 11, 12, 
and 17). Despite these constraints, this variation of the Friedel–Crafts 
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reaction provides easy and efficient access to a good range of attractive 
carbo- and heterocyclic ketones, and for many of these substrates, will be a 
method of choice.  
 
Table 1. Substrate scope 
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Table 1. (cont.) 
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Table 1. (cont.) 
 

 
aReaction was performed on 0.30 mmol scale with a full column and no 
recrystallization. bYield from this work.		
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Appendix	
Chemical	Abstracts	Nomenclature	(Registry	Number)	

 
4-(3,4-Dimethoxyphenyl)butanoic acid; (13575-74-1) 

4-(3,4-Dimethoxyphenyl)butanoyl chloride; (348143-75-9) 
6,7-Dimethoxy-3,4-dihydronaphthalen-1(2H)-one; (13575-75-2) 

Oxalyl chloride, (79-37-8) 
Hexafluoroisopropanol: 1,1,1,3,3,3-Hexafluoro-2-propanol; (920-66-1) 
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