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The benzofuran scaffold is an important heterocyclic core component 
found in several natural products and in polymers.2,3 Typically, 2,3-
disubstituted benzofurans are notable building blocks in many medicinal and 
biologically active compounds.4-9 In addition, 3-substituted benzofurans act 
as anticancer agents,10 antitubercular agents,11 antimicrobial agents,12  

antiviral agents,13 and anti-inflammatory agents.14 They also act as enzyme 
inhibitors,15,16 ischemic cell death inhibitors,17 receptor agonist-antagonists,18 

and use as diagnostic imaging agents targeting amyloid plaques in 
Alzheimer's disease.19 Although syntheses of 2-substituted or 2,3-
disubstituted benzofurans are most common, the syntheses of 3-substituted 
benzofurans are rare.20-24 In 2004, our group reported an unprecedented 
reaction of acrylate formation from readily available aldehydes starting 
materials and ethyl diazoacetate (EDA) in the presence of Brønsted acid, 
HBF4· OEt2.25 While studying the substrate scope of benzaldehydes to 
prepare substituted 3-hydroxyacrylates, our group reacted salicylaldehyde 
with EDA and isolated a very low mass of acrylates with a larger portion of 
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the hemiacetal, 3-ethoxycarbonyl-2-hydroxy-2,3-dihydrofuran. The 
hemiacetal underwent dehydration in the presence of concentrated H2SO4 to 
form the 3-ethoxycarbonyl benzofuran. The general scope of the reaction was 
also investigated using various commercially available substituted 
salicylaldehydes and EDA. The acid catalyzed dehydration via cyclization 
produced the products in excellent yields.26 
 
Alternate	methods	to	prepare	3-alkoxycarbonyl	benzofurans		

 
Most alternate syntheses of 3-alkoxycarbonyl benzofuran involve 

transition metal catalysis.  In 1982, Ortar et al. reported the synthesis of 3-
methoxycarbonyl benzofurans by the oxidation reaction of chromanones 
with excess thallium trinitrate (TTN) in methanol in the presence of trimethyl 
orthoformate (TMOF). The product was isolated as a pale-yellow liquid in 
only 23% yield (Scheme 1).27 
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Scheme 1. Synthesis by a thallium catalyzed oxidation annulation 
 

Henke and coworkers reported a new synthetic route to 3-
ethoxycarbonyl benzofuran (Scheme 2a).28 In this two-step procedure, the 
first step involved the Michael addition of 2-bromophenol with ethyl 
propionate in the presence of trimethylamine to prepare 3-(2-
bromophenoxy)-acrylic acid ethyl ester. Second, a palladium-catalyzed 
intramolecular Heck coupling of the 3-(2-bromophenoxy)acrylic acid ester 
created 3-ethoxycarbonyl benzofuran as a yellow oil in 61% yield. 

Later, Frontier et al. applied a similar synthetic strategy as reported by 
Henke et al.28 involving 3-(2-iodophenoxy)acrylic acid ethyl ester to prepare 
3-ethoxycarbonyl benzofuran in 74% yield (Scheme 2b).29 The ester was 
produced from the reaction of 2-iodophenol and ethyl propionate in the 
presence of N-methylmorpholine (NMM). 

Wang and coworkers reported the formation of 3-ethoxycarbonyl 
benzofuran in 81% yield from (E)-3-phenoxyacrylates through the direct 
oxidative cyclization by a palladium catalyst (Scheme 2c).30 The 



 

Org. Synth. 2019, 96, 98-109                                                              DOI: 10.15227/orgsyn.096.0098 100 

corresponding acrylates were prepared from phenol and propynoic acid 
ethyl ester in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO).  

 

 
 

Scheme 2. Syntheses by a palladium-catalyzed cyclization 
 

Morice et al. reported the preparation of several 3-methoxycarbonyl 
benzofurans based on the conversion of 3-coumaranones into their 
corresponding triflates, followed by palladium assisted CO insertion 
reactions in methanol (Scheme 3).31 3-Coumaranones were prepared from o-
methoxybenzoic acids with oxalyl chloride and diazomethane followed by 
decomposition of the diazo ketone in acetic acid/sodium acetate solution. 
 

 
 

Scheme 3. Synthesis by a palladium assisted CO insertion 
 

Karchava et al. reported the preparation of 3-methoxycarbonyl 
benzofuran from hydroxyacrylates. First, the methyl-2-bromophenylacetates 
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were treated with methyl formate in the presence of sodium hydride and 
after acidic work up, the mixture provided the acrylate product. Later, a 
copper-catalyzed cyclization of the acrylate produced 3-methoxycarbonyl 
benzofuran in 88% yield (Scheme 4).32 
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Scheme 4. Synthesis by a copper-catalyzed cyclization 

 
 Recently, in 2016, Yao et al. reported the synthesis of 3-ethoxycarbonyl 
benzofuran by a Rh(III)-catalyzed reaction between salicylaldehyde and 
ethyl 2-diazo-3-oxopropanoate in dichloroethane (DCE).33 Silver triflimide 
(AgNTf2) favored the formation of 3-ethoxycarbonyl benzofuran via a 
tandem C-H activation/decarbonylation/annulation process in 72% yield 
(Scheme 5).  
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Scheme 5. Synthesis by a rhodium-catalyzed annulation 
	
Applications	of	our	method	in	organic	synthesis	
 

Compared to the alternative syntheses of 3-alkoxycarbonyl benzofuran, 
our synthetic method is simple, less time consuming, and high yielding with 
inexpensive and commercially available starting materials. This one-pot 
synthetic method has been used by us and by other groups in the preparation 
of several biologically active compounds as described herein. 

Telvekar and coworkers synthesized N’-benzylidene benzofuran-3-
carbohydrazides from 3-ethoxycarbonyl benzofurans (Scheme 6).34 All these 
compounds were found to be active against tuberculosis and showed 
antifungal activity against Candida albicans. 
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Scheme 6. Synthesis of N’-benzylidene benzofuran-3-carbohydrazide 
 

Eccles and coworkers synthesized several leukotriene A4 hydrolase 
(LTA4H) inhibitors from 3-ethoxycarbonyl benzofuran (Scheme 7).35 LTA4H 
inhibitors are used in inflammatory diseases, such as bowel disease, 
rheumatoid arthritis, chronic obstructive pulmonary disease, and asthma. 
 

 
Scheme 7. Synthesis of leukotriene A4 hydrolase (LTA4H) inhibitor 

 
Morrow et al. synthesized pterocarpene and coumestan-type 

heterocycles by the Mitsunobu coupling of 3-(hydroxymethyl)benzofurans 
with o-iodophenols (Scheme 8).36 Pterocarpans have been shown to exhibit 
broad spectrum activity against gram-positive bacteria and vancomycin-
resistant strains of enterococci. Coumestans, such as coumestrol and 
flemmichapparin C, have also been shown to display antibacterial, antifungal, 
and antimyotoxic effects. 
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Scheme 8. Synthesis of pterocarpenes and coumestans 

 
 Tolstikov et al. reported several regioselective Diels–Alder reactions of 
Danishefsky’s diene with 3-ethoxycarbonyl benzofurans (Scheme 9).37 These 
reactions provided effective method for the construction of the heterocyclic 
skeleton of hexahydrodibenzofuran-7-one and tetrahydrodibenzofuran-7-
one. These tricyclic fragments are the structural motifs of many 
pharmacologically vital substances, such as plant alkaloids morphine, 
galanthamine, lycoramine, and lunarine, linderol A, and several selective 
estrogen receptor b -agonists. 
 

 
 

Scheme 9. Construction of heterocyclic skeleton 
 

Elofsson and coworkers constructed a library based on the 3-carboxy 2-
aryl benzofuran scaffold from 3-ethoxycarbonyl benzofuran (Scheme 10).38 
These two scaffolds are core components in many biologically active natural 
and synthetic compounds of which many display a wide range of activities 
including antiviral, antibacterial, anti-inflammatory, antiangiogenic, and 
antimitotic activities. 
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Scheme 10. Synthesis of 2-arylbenzofuran-3-carboxamide derivatives 
 

Zhao et al. reported a total synthesis of paeoveitol, the norditerpene 
natural product which has antidepressant ability, from 3-ethoxycarbonyl 
benzofuran (Scheme 11).39 Our published procedure was employed to 
synthesize 3-ethoxycarbonyl benzofuran, which was reduced to paeoveitol D. 
Paeoveitol was synthesized by an unusual intermolecular ortho-quinone 
methide cycloaddition with paeoveitol D with excellent regio- and 
diastereoselectivity. 
 

 
 

Scheme 11. Total synthesis of paeoveitol via paeoveitol D 
 

Later, Chen and coworkers reported the first catalytic asymmetric total 
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benzofuran via a biomimetic hetero-Diels-Alder reaction in the presence of 
chiral phosphoric acids as catalysts (Scheme 12).40 

 

 
Scheme 12. Asymmetric synthesis of (+)-paeoveitol and (-)-paeoveitol 

 
Bongen et al. reported an efficient asymmetric synthesis of 7-benzoyl-2,3-

dihydro-1-benzofuran-3-carboxylic acid, BRL-37959 (Scheme 13).41 3-
Ethoxycarbonyl benzofuran was reduced by magnesium turnings in 
methanol to form 2,3-dihydrobenzofuran-3-carboxylic acid ethyl ester, which 
was resolved by dynamic kinetic resolution. Friedel-Crafts acylation reaction 
of the enantiopure product followed by acidic hydrolysis produced (R)-BRL-
37959, which acts as analgesic agents with low gas irritancy.5 
 

 
 

Scheme 13. Synthesis of enantiopure (R)-BRL-37959 
 

Recently, in 2018, our group reported the synthesis of 7-benzoyl-2,3-
dihydro-1-benzofuran-3-carboxylic acid, BRL-37959 and its analogs from 3-
ethoxycarbonyl benzofuran (Scheme 14).42 To synthesize BRL-37959, 
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incorporation of a benzoyl group at the C-6 position of benzofuran ring by 
the Friedel-Crafts acylation reaction was the main challenge. Our recent 
method demonstrates that bismuth (III) trifluoromethanesulfonate can be 
used as a catalyst for the Friedel-Crafts acylation reaction with good yield. 
This efficient method allowed the production of many analogs of BRL-37959 
in high yield. 
 

 
 

Scheme 14. Synthesis of BRL-37959 and its analogs 
 

In summary, 3-ethoxycarbonyl benzofuran plays a pivotal role in the 
field of medicinal and pharmaceutical chemistry. The concise synthesis of 3-
ethoxycarbonyl benzofuran was reported by our group with excellent yield 
from commercially available starting materials. In this addendum, we 
discussed several alternate methods for the preparation of 3-ethoxycarbonyl 
benzofuran and applications of our published method to synthesize 
important biologically active compounds. In the future, our developed 
method of preparing 3-ethoxycarbonyl benzofuran could be a valuable 
procedure in making benzofuran-ring containing natural and unnatural 
products. 
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