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There has been remarkable progress in organophosphine-catalyzed 

reactions,2 especially the processes involving [4C+X] annulations, because of 
their potential application in building 5–8-membered cyclic products. The 
phosphine-catalyzed [4 + 2] annulation between 2-alkyl-but-2,3-dienoates 
and aldimines, first reported by our group in 2003, has become a powerful 
tool in the construction of substituted tetrahydropyridine derivatives 
(Scheme 1).3 According to the generally accepted mechanism, nucleophilic 
addition of tri-n-butylphosphine to the b-position of α-alkyl allenoates results 
in the formation of a resonance stabilized zwitterionic species A. The 
nucleophilic addition of the enolate A into N-tosylimine 2 produces 
sulfonamide B. Through proton transfer, the species B equilibrates with the 
vinylogous phosphonium ylide C/D. One more proton transfer facilitates the 
formation of the sulfonamide anion in E, which undergoes conjugate addition 
to the a, b -enoate, followed by b -elimination of tributylphosphine, resulting 
in the formation of tetrahydropyridine 3. This Discussion Addendum focuses 
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on new developments of this [4 + 2] annulation−including its asymmetric 
versions and synthetic utility−since 2003. 

 

 
Scheme 1. Mechanism for a-alkylallenoate−imine [4 + 2] annulation by 

Kwon  
 
When reacting 2-substituted 2,3-butadienoates and N-tosylimines in the 

presence of tributylphosphine, Kwon’s [4 + 2] annulation proceeds to afford 
tetrahydropyridines with high efficiency and diastereoselectivity. 
Specifically, ethyl a -methylallenoate undergoes the [4 + 2] annulation with a 
variety of N-tosylarylimines to provide tetrahydropyridines, typically in over 
90% isolated yields. The allene–imine [4 + 2] annulation is a robust process, 
with the gram-scale preparation of tetrahydropyridines having been 
reported.3 

While 2-methyl-2,3-butadienoate undergoes efficient [4 + 2] annulations 
with N-tosylimines, 3-methyl-3,4-pentadienone experiences a surprising 
cascade event, incorporating two molecules of the imine in the process. For 
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instance, in 2005 Shi presented a rare example for the synthesis of cinnamyl 
tetrahydropyridyl ketone from 3-methyl-3,4-pentadienone and N-
tosylimines in the presence of tributylphosphine (Scheme 2).4 This reaction 
generated the phosphonium enolate G as the intermediate responsible for 
incorporating another unit of the imine and affording the corresponding 
cinnamyl tetrahydropyridyl ketone.  

 

 
Scheme 2. Shi’s formation of tetrahydropyridine derivatives  

 
Later in 2012, Ye and co-workers employed saccharin-derived cyclic 

ketimines in [4 + 2] annulations, allowing rapid access to a variety of 
functionalized tricyclic tetrahydropyridines in good yields (Scheme 3).5 

 

  
Scheme 3. Ye’s synthesis of functionalized polycyclic tetrahydro-

pyridines  
 
In 2014, Guo and co-workers identified cyclic sulfamate as the imine 

component of the phosphine-catalyzed [4 + 2] annulation protocol (Scheme 
4).6 The reaction was efficient at producing the tricyclic sulfamate 8 in high 
yield. 
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Scheme 4. Guo’s preparation of functionalized tetrahydropyridines  

 
Enantioselective Allene−Imine [4 + 2] Annulation: A few asymmetric 

versions of Kwon’s allene-imine [4 + 2] annulation have been reported.	 In 
2005, Fu demonstrated an elegant example of the asymmetric [4 + 2] reaction, 
generating functionalized tetrahydropyridines when employing Gladiali’s 
phosphepine (R)-P1 as the catalyst (Scheme 5).7 The reactions provided 
tetrasubstituted tetrahydropyridines in almost quantitative yields, with 
excellent diastereoselectivities and enantioselectivities. A 
vinylidenesuccinate, namely a -ethoxycarbonylmethylallenoate, was applied 
to ensure high reactivity and selectivity.  

	
Scheme 5. Fu’s asymmetric allene−imine [4 + 2] annulations  

 
In 2011, Zhao introduced an amino acid-derived bifunctional N-acyl 

aminophosphine catalyst P2 for the asymmetric allene−imine [4 + 2] 
annulation.8 This reaction gave series of chiral tetrahydropyridine 
derivatives in excellent yields with high enantioselectivities (Scheme 6). 

 

 
Scheme 6. Zhao’s enantioselective preparation of tetrahydropyridines   
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Sasai reported enantioselective synthesis of polycyclic 
tetrahydropyridines from cyclic sulfonylimines in 2014 (Scheme 7).9 The  
chiral spiro-phosphepine catalyst (R)-SITCP (P3) promoted enantioselective 
formal [4 + 2] cycloaddition of saccharin-derived ketimines and ethyl α-
methylallenoate. These reactions afforded the tricyclic tetrahydropyridines in 
good yields and enantiomeric excesses with excellent regioselectivity. 

Scheme 7. Sasai’s asymmetric synthesis of functionalized tricyclic 
tetrahydropyridines   

 
In the same year, Guo and co-workers demonstrated that 

enantioenriched cyclic sulfamates were formed when using the amino acid-
based bifunctional phosphine P4 as the chiral catalyst (Scheme 8).10 This 
asymmetric [4 + 2] cycloaddition furnished chiral sulfamate-fused 
tetrahydropyridines in high yields with excellent enantioselectivities.  

Scheme 8. Guo’s asymmetric synthesis of cyclic sulfamates  
 

Most recently, in 2018 our group reported the catalytic enantioselective 
synthesis of guvacine derivatives through [4 + 2] annulations of imines with 
a-methylallenoates.11 A P-chiral [2.2.1] bicyclic phosphine, exo-(p-anisyl)-
HypPhos (P5), was applied in reactions between a -alkylallenoates and 
imines, producing enantioenriched guvacine derivatives (Scheme 9). This 
method was applied for the synthesis of enantiopure aplexone 10 through a 
high-yielding Tebbe olefination/hydrolysis sequence. Phenotypic assay of 
both aplexones with zebrafish embryos revealed that (R)-aplexone was 
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responsible for the decreased cellular levels of cholesterol in zebrafish 
embryos. 

 

 
Scheme 9. Kwon’s catalytic enantioselective synthesis of guvacine 

derivatives 
 
Application of [4+2] annulation reaction: The potential of the 

allene−imine [4 + 2] annulation reaction in the total synthesis of natural 
product was first illustrated in the formal synthesis of (±)-alstonerine 
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reported the total synthesis of (−)-alstonerine (14) from the allyl alcohol 13.13,14 
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Scheme 10. Kwon’s formal total synthesis of (±)-alstonerine 

 
In 2012, our group applied a similar [4 + 2] annulation of ethyl a-

methylallenoate with imine to the total synthesis of (±)-hirsutine (Scheme 
11).15 The phosphine-catalyzed [4 + 2] annulation of the crude N-(o-
nosyl)imine with ethyl α-methylallenoate afforded tetrahydropyridine in 
73% yield over two steps. The formation of tetrahydropyridine in good yield 
from the crude imine revealed the robustness of this reaction. Subsequent 
functional group manipulations resulted in the construction of the C-ring and 
completed the total synthesis of (±)-hirsutine with good efficiency.  

 

  
Scheme 11.  Kwon’s total synthesis of (±)-hirsutine 
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catalytic PBu3 afforded, in good yield, a tetrahydropyridine intermediate 
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having  A-, B-, and D-rings of reserpine. Further construction of the C-ring in 
two steps from a key intermediate, and subsequent 6π-electrocyclization to 
form the E-ring, provided the reserpine’s pentacyclic scaffold 16. 

	

	
Scheme 12. Kwon’s access to the skeletal framework of reserpine 

 
In 2007, our research group reported the first example of phosphine 

catalysis using polystyrene-bound allenoates for the preparation of a 
combinatorial library and the identification of potent inhibitors of protein 
geranylgeranyltransferase type I (GGTase-I) and Rab 
geranylgeranyltransferase as potential anticancer therapeutics.17,18,19 
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allenoates 17 (Scheme 13). Through the split-and-pool strategy, extensive 
arrays of allenoic acid, imine, and thiol building blocks were incorporated, 
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functionalized tetrahydropyridines, pyrrolines, pyrrolidines, and 
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Scheme 13. Kwon’s phosphine-catalyzed synthesis of GGTase-I 

inhibitor libraries 
 

solid pancreatic tumor and lung cancer models in mice, hinting at the 
possibility of developing novel anticancer therapeutic leads.20,21  
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polyheterocyclic compounds. Delightfully, compound 20−22 displayed 
subtoxic antimigratory activity against MDA-MB-231 human breast cancer 
cells. 

 
Scheme 14. Kwon’s diversity-oriented synthesis of a polyheterocyclic 

compound library  
 
Taking advantage of the facile preparation of the Wang resin-bound 

tetrahydropyridines, a library of octahydro-1,6-naphthyridin-4-ones was 
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Scheme 15. Kwon’s formation of octahydro-1,6-naphthyridin-4-ones  

 
in the presence of tributylphosphine (Scheme 15). The resulting 
tetrahydropyridine carboxylate esters 23 were treated with Tebbe reagent 
and then subjected to Diels−Alder reactions with imines. Notably, the same 
imine building blocks were used in both the phosphine catalysis and the 
Diels−Alder reactions. Highly diastereoselective hydrolysis of the 
octahydronaphthyridines 24 occurred upon simple treatment with 
trifluoroacetic acid (TFA), releasing the naphthyridinones 25. 

Among the 96 naphthyridinones, five distinctive octahydro-1,6-
naphthyridin-4-ones 26−30 displayed excellent activation of endothelial cell 
triggered induction of innate immune response (Scheme 16). These studies 
illustrate the potential utility of the products of phosphine catalysis. The 
ready translation of the original phosphine-catalyzed reactions from solution 
to the solid phase enables the facile preparation of analogues through split-
and-pool combinatorial synthesis−a crucial aspect of modern chemical 
biology. 
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Scheme 16. Kwon’s immunoactivating octahydro-1,6- naphthyridin-4-

ones  
 
Several advances in enhancing the utility of the [4 + 2] annulations have 

been realized in recent years. These reactions have proved to be generally 
efficient in many varied settings, including in solid-phase and under the 
influence of chiral phosphines. Because a tetrahydropyridine core appears in 
countless natural products and bio-active molecules, we anticipate that these 
[4 + 2] annulations between allene and imine will continue to find use in 
valuable product syntheses, especially those for which mild conditions, 
robust efficiency, and high selectivity are paramount. 
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