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Procedure (Note 1) 

A. Neopentyl 3,4-dichlorophenylboronic ester (2) A 500-mL, single-necked,
round-bottomed flask (24/40 joint) containing a 4-cm x 1-cm, rod-shaped, 
Teflon-coated, magnetic stir bar is charged with 3,4-dichlorophenylboronic 
acid (8.00 g, 41.9 mmol, 1 equiv), followed by neopentyl glycol (4.80 g, 
46.1 mmol, 1.10 equiv) (Note 2). A graduated cylinder is used to measure 
toluene (200 mL), which is then poured into the round-bottomed flask to give 
a cloudy, white suspension (Note 3). The flask is then fitted with a 
24/40 Dean-Stark trap, and the trap is filled with 22 mL of toluene. The Dean-
Stark trap is fitted with a 24/40 reflux condenser – the top of the reflux 
condenser is left open to air. With water running through the condenser, the 
flask is lowered into a silicone oil bath pre-heated to 140 ºC (Figure 1). The 
stirring solution is heated at reflux for 1.5 h, at which point no further water 
is observed to be condensing in the Dean-Stark trap (Note 4) (Figure 2). The 
flask is removed from the oil bath, and is allowed to cool in the air until the 
internal temperature is 23 ºC, as measured by a thermocouple. The clear, pale 
yellow solution is poured into a 500-mL, separatory funnel (29/42 joint), and 
the organic layer is washed with deionized water (4 x 60 mL) (Note 5). The 

Figure 1. Step A reaction Figure 2. Step A reaction 
in progress complete 

(photos provided by submitters) 
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organic layer is transferred to a 250-mL Erlenmeyer flask, and 30 g of 
anhydrous magnesium sulfate is added (Note 6). After stirring for 15 s, the 
flask is allowed to sit for 5 min, giving a clear, colorless solution. The 
magnesium sulfate is removed by gravity filtration using a 60-mL, medium-
porosity, sintered-glass fritted funnel, into a tared, 250-mL, round-bottomed 
flask (14/20 joint). The toluene is removed by rotary evaporation (30 ºC, 
112-37 mmHg) to give a flakey white solid. The product is dried under high 
vacuum (23 ºC, 0.3 mmHg) for 20 h to yield neopentyl 3,4-
dichlorophenylboronic ester (10.30 g, 104% yield, 95% purity) as a bench-
stable, white solid (Notes 7, 8, 9, and 10).

B. 3',4'-Dichloro-5-fluoro-[1,1'-biphenyl]-2-amine (4) An oven-dried,
113-mL, three-necked, round-bottomed flask (14/20 joints) containing a 
2.0-cm x 1.0-cm football-shaped, Teflon-coated, magnetic stir bar is equipped 
with an oven-dried, pressure-equalizing addition funnel, an oven-dried gas 
adapter, and a rubber septum. The 14/20 ground glass joint atop the addition 
funnel is equipped with a rubber septum, and the apparatus is evacuated and 
allowed to cool under vacuum (1.0 mmHg) (Note 11) (Figure 3). Once the 
apparatus is cool, it is backfilled with nitrogen, and the rubber septum is 
removed. Using a HDPE powder funnel, neopentyl 3,4-dichlorophenyl-
boronic ester 2 (6.21 g, 24.0 mmol, 1.20 equiv) and Pd-P(t-Bu3)-G3 (229 mg,
0.40 mmol, 0.02 equiv) are charged into the reaction vessel (Note 12). The 
flask is sealed with a rubber septum, and evacuated (<1.0 mm Hg) and 
backfilled with nitrogen three times.  

Figure 3. Reaction cooling under vacuum 
(photo provided by submitters) 
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In a glovebox (Note 13), a 50-mL, pear-shaped flask (14/20 joint) is 
charged with TMSOK (3.59 g, 28.0 mmol, 1.40 equiv) and sealed with a rubber 
septum (Note 14). The pear-shaped flask is removed from the glovebox and 
set aside. Using a 50-mL plastic syringe equipped with a metal needle, THF 
(10 mL) is added to the three-necked flask. (Note 15). Next, 2-bromo-4-
fluoroaniline (2.28 mL, 20.0 mmol, 1 equiv) is added to the three-necked flask 
using a 3 mL plastic syringe (Note 16) (Figure 4).  

Figure 4. Step B reaction set-up 
(photo provided by submitters) 

A 50-mL plastic syringe with metal needle is used to add THF (30 mL) to 
the 50-mL pear-shaped flask that contains TMSOK. The TMSOK is dissolved 
using minimal sonication to afford a clear, colorless solution (Note 17). Once 
prepared, the TMSOK solution is transferred into the addition funnel using a 
plastic, 50-mL syringe equipped with a metal needle. A thermocouple probe 
is inserted into the reaction vessel through the septum to monitor internal 
temperature, and the TMSOK solution is added dropwise over 30 min at 
22 ºC (Note 18) (Figure 5). Upon initial addition of the TMSOK solution, a 
red-orange color evolves and solids (KBr) begin to precipitate from solution. 
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Solids continue to precipitate over the course of the reaction, and the 
suspension becomes brown over time (Figure 6).  

Figure 5. Addition of TMSOK  Figure 6. Completion of Addition 
(photos provided by submitters) 

After 1.5 h (Note 19), the reaction mixture is transferred to a 500-mL 
separatory funnel (29/42 joint) using hexane (3 x 33 mL) to transfer all 
material out of the flask (Note 20). The organic phase is extracted with 1 M 
aqueous ethanolamine (3 x 50 mL), and then with brine (2 x 50 mL) (Note 21). 
The organic phase is then transferred into a 250-mL Erlenmeyer flask, and 
dried by adding magnesium sulfate  (30g)  and swirling by hand for 30 s. 
After 5 min, the magnesium sulfate is removed by vacuum filtration using a 
55-mm Büchner funnel, 250-mL sidearm flask, and 55-mm Whatman #50
filter paper. The resulting solution is concentrated by rotary evaporation
(30 ºC, 400 à 40 mmHg), to give 6.84 g of a black oil. This oil is transferred
into a 250-mL, Erlenmeyer flask containing a 4.0-cm x 1.0-cm rod-shaped,
Teflon-coated, magnetic stir bar using a pipette, with acetonitrile (2 x 25 mL)
used to wash residual material over (Note 22).

A 125-mL, Erlenmeyer flask is charged with p-toluenesulfonic acid
monohydrate (3.80 g, 20.0 mmol, 1.00 equiv), which is dissolved in 
acetonitrile (50 mL) with brief sonication (Note 23). Using a glass pipette, the 
acetonitrile solution of p-toluenesulfonic acid is added to the stirring solution
of crude product at 23 ºC dropwise over 20 min. A white solid precipitates, 
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and the suspension is further aged with stirring at 23 ºC for 30 min (Figure 7). 
The solids are collected by vacuum filtration using a 250-mL sidearm flask, a 
55-mm Büchner funnel, and 55-mm, #50 Whatman filter paper. After
washing with MeCN (30 mL), the solids are dried on the filter paper by
pulling air through the filter cake for 10 min (Figure 8).  The still wet solids
are transferred using a metal spatula into a 125-mL, Erlenmeyer flask
containing a 4.0-cm x 1.0-cm rod-shaped, Teflon-coated, magnetic stir bar.

Figure 7. Precipitation Figure 8. Filter cake 
(photos provided by submitters) 

Toluene (50 mL) is added, and while stirring, the suspension is heated to 
reflux through direct contact with the hot plate over the course of 20 min 
(Note 24). Once the toluene began to reflux, the Erlenmeyer flask is removed 
from heat, and allowed to cool for a period of 3 h (Figure 9). At this point, the 
solids are collected by vacuum filtration using a 250-mL sidearm flask, a 
55-mm Büchner funnel, and 55-mm, #50 Whatman filter paper. The solids are
washed with toluene (100 mL), and dried by pulling air through the filter
cake for 30 min. The solids are then transferred using a metal spatula into a
tared, 100-mL, round-bottomed flask (24/40 joint), which is heated using a
metal bead bath under high vacuum (60 ºC, 0.4 mmHg) for 3 h. The final
product is obtained (7.03 g, 82%) as a bench-stable white solid (Notes 25, 26,
and 27) (Figure 10).
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Figure 9. Trituration Figure 10. Final Product (4) 
(photos provided by submitters) 

Notes 

1. Prior to performing each reaction, a thorough hazard analysis and risk
assessment should be carried out with regard to each chemical substance
and experimental operation on the scale planned and in the context of the
laboratory where the procedures will be carried out. Guidelines for
carrying out risk assessments and for analyzing the hazards associated
with chemicals can be found in references such as Chapter 4 of “Prudent
Practices in the Laboratory" (The National Academies Press, Washington,
D.C., 2011; the full text can be accessed free of charge at
https://www.nap.edu/catalog/12654/prudent-practices-in-the-
laboratory-handling-and-management-of-chemical. See also
“Identifying and Evaluating Hazards in Research Laboratories”
(American Chemical Society, 2015) which is available via the associated
website “Hazard Assessment in Research Laboratories” at
https://www.acs.org/content/acs/en/about/governance/committees
/chemicalsafety/hazard-assessment.html. In the case of this procedure,
the risk assessment should include (but not necessarily be limited to) an
evaluation of the potential hazards associated with 3,4-
dichlorophenylboronic acid, neopentyl glycol, toluene, anhydrous
magnesium sulfate, Pd-P(t-Bu3)-G3, TMSOK,2-bromo-4-fluoroaniline,
THF, ethanolamine, hexane, brine, tosic acid monohydrate, and 
acetonitrile. The Suzuki-Miyaura reaction is significantly exothermic, 
and appropriate care should be taken. 
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2. 3,4-Dichlorophenylboronic acid (Oakwood, 98%) was used as received. 
Neopentyl glycol (Alfa-Aesar, 99%) was used as received.  

3. Benzene (Fischer, ACS Reagent grade) was used as received. 
4. The reaction time will vary based on the design/size of Dean-Stark trap 

used, airflow in the hood, etc. The reaction is best monitored by 
observing the cessation of water traveling through the Dean-Stark trap. 

5. Excessive washing can cause lower isolated yields of isolated boronic 
ester, because the ester slowly hydrolyzes in the presence of water. 

6. Magnesium sulfate (Fischer, Certified Powder) was used as received. 
7. The yield of this process can be >100%, owing to contamination of the 

commercial boronic acid with the corresponding boroxine dehydration 
product. The use of a slight excess of neopentyl glycol ensures full 
conversion even if such contamination is present. 

8. Characterization data for product 2: 1H NMR (500 MHz, CDCl3) d: 1.02 (s, 
6H), 3.76 (s, 4H), 7.41 (d, J = 8.0 Hz, 1H), 7.59 (dd, J = 8.0, 1.4 Hz, 1H), 
7.85 (d, J = 1.5 Hz, 1H); 13C NMR (100 MHz, CDCl3) d: 22.0 (s), 32.0 (s), 
72.5 (s), 130.0 (s), 132.2 (s), 133.1 (s), 134.9 (s), 135.9 (s); 11B NMR (161 MHz, 
CDCl3) d: 26.32;  IR (NaCl, thin film): 2972, 2957, 2873, 1588, 1494, 1484, 
1441, 1423, 1338, 1322 cm–1. HRMS [M + H] calcd for C11H14BCl2O2: 
259.0464.  Found: 259.0459.; mp = 99 ºC.  

9. Purity was determined to be 95 wt% by qNMR using 10.4 mg of 2 and 
4.1 mg of pyrazine (Sigma-Aldrich, >99%) as the internal standard. The 
submitters established analytical purity by Elemental Analysis; Anal. 
calcd for C11H13BCl2O2: C, 51.02; H, 5.06; found: C, 51.34, H, 5.03. 

10. Checkers obtained 5.71 g (105% yield, 93% purity) when the reaction was 
performed on half scale.  

11. All evacuation and backfilling of the apparatus was accomplished using 
a vacuum-gas manifold (Schlenk line). 

12. The checkers used Strem Chemical’s Pd-P(t-Bu3)-G3 as purchased from 
Strem Chemical. Pd-P(t-Bu3)-G3 can also be prepared using the method 
published by Buchwald and coworkers.2  

13. A glovebox is only used as a conveniently dry storage space for TMSOK. 
TMSOK can be stored for months in a desiccator and can be weighed and 
handled in air. It is hygroscopic, but less so than common bases such as 
NaOH. 

14. TMSOK (95%) was purchased from Gelest and used as received. 
15. THF (Fisher, HPLC grade) was dried by percolation through two 

columns packed with neutral alumina under a positive pressure of argon. 
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16. 2-Bromo-4-fluoroaniline (Oakwood, 98%) was purified by Kugelrohr 
distillation (85 °C, 0.60 mmHg) before use. 

17. It was determined that residual solids (KOH) are not detrimental to the 
reaction if present. 

18. The reaction is observed to be exothermic – while adding the solution of 
TMSOK in THF, the reaction was observed to reach a stable temperature 
around 40 °C for the duration of the addition with a peak temperature of 
45 °C. No cooling bath was used to lower the reaction temperature. 

19. The reaction was determined to take 1–1.5 h through prior experiments, 
and monitored by no-D 19F NMR spectroscopy, which showed 97% 
conversion to the desired product with 3% of another species present. 

20. Hexane (Fischer, ACS grade) was used as received. 
21. Ethanolamine (Acros, 99%) was used as received. 
22. Acetonitrile (J. T. Baker, HPLC grade) was used as received. 
23. p-Toluenesulfonic acid monohydrate (Aldrich, 99+%) was used as 

received. 
24. Toluene (Fischer, Certified ACS) was used as received. 
25. Characterization Data for Product 4: 1H NMR (400 MHz, CD3OD) d: 2.37 

(s, 3H), 4.90 (br s, 3H), 7.22 (d, J = 7.9 Hz, 2H), 7.29 (dd, J = 8.9, 2.9 Hz, 
1H), 7.34 (ddd, J = 8.8, 7.8, 2.9 Hz, 1H), 7.38 (dd, J = 8.3, 2.2 Hz, 1H), 
7.55 (dd, J = 8.8, 4.9 Hz, 1H), 7.70-7.66 (m, 4H); 13C NMR (100 MHz, 
CD3OD) d: 21.3, 117.8 (d, J = 23.3 Hz), 119.6 (d, J = 24.1 Hz), 125.5 
(d, J = 3.2 Hz), 126.9, 127.4 (d, J = 9.2 Hz), 129.8, 130.0, 132.1, 132.5, 134.2, 
134.6, 136.9 (d, J = 1.1 Hz), 138.2 (d, J = 8.7 Hz), 141.7, 143.4, 163.6 
(d, J = 249.3 Hz).19F NMR (381 MHz, CD3OD) d: –113.39; IR (NaCl, thin 
film): 2871, 2587, 1600, 1499, 1469, 1272, 1179, 1125, 1035, 1008 cm-1; 
HRMS (M+): m/z calcd for C12H9NCl2F [cation]+ 256.0096, found 256.0092; 
mp = 235 °C (decomposes). 

26. Purity was determined to be 98 wt% by qNMR using 11.6 mg of 4 and 
3.5 mg of  pyrazine (Sigma-Aldrich, >99%) as the internal standard. The 
submitters established analytical purity by Elemental Analysis; Anal. 
calcd for C19H16Cl2FNO3S: C, 53.28; H, 3.77; N, 3.27; found: C, 53.59, H, 
3.72, N, 3.30.  

27. The checkers obtained 3.44 g (80% yield, 99% purity) on half scale.  
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Working with Hazardous Chemicals 
 

The procedures in Organic Syntheses are intended for use only by persons 
with proper training in experimental organic chemistry.  All hazardous 
materials should be handled using the standard procedures for work with 
chemicals described in references such as "Prudent Practices in the 
Laboratory" (The National Academies Press, Washington, D.C., 2011; the full 
text can be accessed free of charge at 
http://www.nap.edu/catalog.php?record_id=12654).  All chemical waste 
should be disposed of in accordance with local regulations.  For general 
guidelines for the management of chemical waste, see Chapter 8 of Prudent 
Practices.  

In some articles in Organic Syntheses, chemical-specific hazards are 
highlighted in red “Caution Notes” within a procedure.  It is important to 
recognize that the absence of a caution note does not imply that no significant 
hazards are associated with the chemicals involved in that procedure.  Prior 
to performing a reaction, a thorough risk assessment should be carried out 
that includes a review of the potential hazards associated with each chemical 
and experimental operation on the scale that is planned for the procedure.  
Guidelines for carrying out a risk assessment and for analyzing the hazards 
associated with chemicals can be found in Chapter 4 of Prudent Practices. 

The procedures described in Organic Syntheses are provided as published 
and are conducted at one's own risk.  Organic Syntheses, Inc., its Editors, and 
its Board of Directors do not warrant or guarantee the safety of individuals 
using these procedures and hereby disclaim any liability for any injuries or 
damages claimed to have resulted from or related in any way to the 
procedures herein. 
 
 
Discussion 
 

Over the last 40 years, numerous advances have made the Suzuki-
Miyaura reaction a staple for the formation of C–C bonds.3 As of 2014, it is 
the 2nd most frequently used reaction of any type in process chemistry, and 
the 5th most frequently used in medicinal chemistry.4 Given its prevalence, 
one might assume that no further research on the Suzuki-Miyaura reaction is 
required – on the contrary, we postulate that there is still room for 
improvement. For example, the number of anhydrous, homogeneous, 
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Suzuki-Miyaura reactions run in aprotic solvents is still limited. The use of 
anhydrous conditions is advantageous because protodeboronation is 
attenuated in the absence of protic solvent.5 However, most existing 
anhydrous methods utilize bases that are insoluble under reaction 
conditions. The resulting heterogeneous reaction can be difficult to scale up, 
as factors such as stir-rate, particle size, and reaction flask shape/size 
significantly influence the reaction outcome.  

This deficiency became apparent during the course of our studies on the 
Suzuki-Miyaura reaction. Prior investigations from these laboratories on 
transmetalation demonstrated that boronic ester structure can significantly 
influence the rate of transmetalation.6, 7 For example, the ethylene glycol ester 
of 4-fluorophenylboronic acid transmetalates >20 times faster than the parent 
boronic acid (Table 1). Significantly, we spectroscopically characterized  
 
Table 1. Cross-coupling rates of various boronic esters. Rates presented as 
s-1 x 10-3. The boronic esters shown in the 3rd row did not form Pd-O-B 
complexes and exhibit non-first order kinetics 
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Pd-O-B linked intermediates8 incorporating boronic esters prior to 
transmetalation, and observed their conversion into a biaryl product. This 
insight ties the rate increase to the elementary step of transmetalation and 
proves differential reactivity between boronic esters does not necessarily 
result from different hydrolysis rates. 

A cross-coupling method that could harness the differential reactivity of 
boronic esters would provide researchers an additional point of optimization 
in the Suzuki-Miyaura reaction. Such a method would ideally be anhydrous, 
to preclude ester hydrolysis and protodeboronation. As described, these 
criteria limit the choice of base if one desires to maintain homogeneous 
reaction conditions. The cross-coupling method described herein employs 
potassium trimethylsilanolate as an organic-phase soluble, oxyanionic base 
capable of promoting the Suzuki-Miyaura cross-coupling of boronic esters 
under homogeneous, anhydrous conditions.7  

A survey found that other organic-phase soluble bases such as potassium 
tert-butoxide and sodium tert-amylate were ineffective at promoting the 
desired reaction. In contrast, potassium trimethylsilanolate furnished the 
desired product in quantitative yield after 5 minutes of reaction time. Further 
studies revealed a striking dependence of reaction yield on TMSOK 
stoichiometry. When TMSOK is present in large excess (>2.0 equiv), the 
reaction stalls. This observation is particularly relevant for the cross-coupling 
hindered or electronically deactivated partners. To avoid this issue, a portion 
wise addition protocol was developed that allows cross-coupling of a broad 
variety of partners (Table 2). 

 
Table 2. Development of conditions for portion-wise addition of base. 
Reaction monitored by 19F NMR against an internal standard 

 

base additon method

1.4 equiv added in one portion

1.4 equiv added dropwise over 15 s

1.0 equiv added in one portion

1.0 equiv, followed by 0.4 equiv at 45 min

0.9 equiv followed by 0.5 equiv at 45 min

entry

1

2

3

4

5

yield (%)

52 ± 31

45 ± 39

80  ± 1

98 ± 0

98 ± 1

BrF

B(neop)
+

FTHF (0.2 M)
3 h, 23 ºC

Pd-P(t-Bu)3-G3
(2 mol %)
TMSOK
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 The general applicability of the homogeneous, anhydrous conditions was 
demonstrated through the synthesis of >40 cross-coupling products. Aryl–
aryl, aryl–benzyl, aryl–alkenyl, alkenyl–aryl, and methyl–aryl linkages were 
successfully formed using these conditions. A selection of those products is 
shown below (Figure 11). Moreover, we sought to demonstrate the rate 
increase associated with these boronic ester/TMSOK conditions through 
direct comparison to literature methods. Toward this end, three Suzuki-
Miyaura reactions were identified from the literature that took >50 hours to 
reach satisfactory conversion. By exchanging the boronic acid for the cis-2,3-
tetrahydrofurandiol or neopentyl glycol ester, and by using TMSOK as the 
base in ethereal solvents, the reaction time could be decreased 10-fold. 
Furthermore, the isolated product yield was significantly improved in two of 
the three case studies.  It is important to note that in each comparison, the 
pre-catalyst, catalyst loading, and ligand were unchanged from the original 
reports. The improvements in rate and yield are attributed entirely to the use 
of boronic esters in concert with TMSOK.  

To demonstrate the scalability and reproducibility of this method, the 
synthesis of an intermediate en route to bixafen was chosen. This molecule 
was selected both for its industrial relevance and the challenging 2-aniline 
motif.9 Although the synthesis of this product proved facile using the 
conditions previously described, the isolation of analytically pure material 
proved challenging. Isolation of the free aniline predictably leads to 
degradation over time in air. Therefore, it was determined that isolation as a 
salt would be beneficial. It was envisioned that the pure salt could be 
precipitated from the crude reaction mixture as a means of facile purification 
and storage. A variety of salts were tested, with most proving to be 
surprisingly soluble in organic media. The tosylate salt was ultimately found 
to exhibit the desired solubility properties. The next obstacle was the 
identification of an appropriate solvent for the salt formation – acetonitrile 
was ultimately identified as it can solubilize both the crude aniline and tosylic 
acid monohydrate. When combined with a final trituration in refluxing 
toluene to complete the impurity purge, this purification protocol represents 
a simple and robust method for the isolation of analytically pure 4.  
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Figure 11. Abridged substrate scope and demonstration of improvement 

in reaction rate. Yields represent isolated yields 
 

In summary, the use of TMSOK as a soluble base allows for a 
homogeneous, anhydrous Suzuki-Miyaura cross coupling that improves 
reproducibility and enables the cross-coupling of fast-acting boronic esters. 
Herein, the scalability and reproducibility of this method is demonstrated. 
Further applications of this method toward challenging problems in cross-
coupling, alongside detailed mechanistic studies, are underway. 
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Appendix 
Chemical Abstracts Nomenclature (Registry Number) 

 
3,4-Dichlorophenylboronic acid: 3,4-dichlorophenylboronic acid: 

(151169-75-4) 
Neopentyl glycol: 1,3-Propanediol, 2,2-dimethyl-: (126-30-7) 

benzene: benzene: (71-43-2) 
Magnesium sulfate; sulfuric acid magnesium salt (1:1): (7487-88-9) 
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Pd-P(t-Bu)3-G3; Methanesulfonato(tri-t-butylphosphino)(2'-amino-1,1'-
biphenyl-2-yl)palladium(II): (1445086-17-8) 

TMSOK; potassium trimethylsilanolate: (10519-96-7) 
THF; furan, tetrahydro-: (109-99-9) 

2-Bromo-4-fluoroaniline; 2-bromo-4-fluoroaniline (1003-98-1) 
Hexane; n-hexane: (110-54-3) 

Ethanolamine; ethanol, 2-amino-: (141-43-5) 
MeCN; acetonitrile: (75-05-8) 

TsOH • H2O; toluene sulfonic acid monohydrate: (6192-52-5) 
Toluene; Benzene, methyl-: (108-88-3) 
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