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The use of asymmetric catalysis in the enantioselective construction of 

all-carbon quaternary stereocenters is a contemporary challenge in organic 
synthesis.2-7 Conjugate addition reactions of carbon nucleophiles to  
β,β-disubstituted α,β-unsaturated carbonyl compounds has emerged as an 
effective strategy to address this challenge.8 Copper-catalyzed asymmetric 
conjugate addition reactions generally employ highly reactive nucleophiles 
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such as dialkylzinc,9-17 triorganoaluminum,18-27 organozirconium,28-30 and 
organomagnesium reagents.31-34 Organoaluminum nucleophiles have also 
been reported to participate in asymmetric conjugate addition reactions to 
β,β-disubstituted α,β-unsaturated carbonyl compounds under rhodium 
catalysis.35 Unfortunately, use of such highly reactive organometallic species 
require rigorous exclusion of moisture and oxygen, and can limit the 
functional group tolerance of these transformations. 

Efforts by Hayashi and coworkers have led to the development of 
rhodium complexes to catalyze the addition of organoboron nucleophiles to 
α,β-unsaturated carbonyl compounds with excellent levels of 
enantioselectivity.36 In contrast to the previously mentioned organometallic 
nucleophiles, organoboron nucleophiles are easily handled and stored on the 
benchtop, and the mild nature of these reagents allow for rhodium-catalyzed 
conjugate addition reactions to tolerate a wide variety of functional groups. 
While reports of rhodium-catalyzed conjugate addition with  
β,β-disubstituted α,β-unsaturated carbonyl compounds are rare,  chiral diene 
ligated rhodium complexes have proven to be effective catalysts for the 
formation of stereogenic all-carbon quaternary centers via this reaction 
manifold. Unfortunately, commercially available boronic acids are not 
suitable for this process, which often requires the use of tetraaryl borates37 or 
boroxines.38 Despite the associated advantages of rhodium-catalyzed 
conjugate addition, the high cost of rhodium, and oxygen sensitivity of these 
processes are undesirable.  

Palladium catalysis has recently emerged as a more robust and cost-
effective alternative to rhodium-catalyzed conjugate addition processes. The 
asymmetric construction of tertiary β-substituted ketones utilizing a cationic 
palladium(II)-DuPHOS complex was described by Minnaard and coworkers 
in 2011, and displays a remarkable tolerance to air and moisture.39  
Unfortunately, the conditions outlined in this report are not suitable for the 
asymmetric construction of quaternary stereocenters. A subsequent report 
from Lu and colleagues disclosed that a cationic palladium(II)-bipyridine 
complex is a competent catalyst for the reaction of β,β-disubstituted  
α,β-unsaturated ketones, although it is worth noting that these conditions do 
not allow for the construction of enantioenriched all-carbon quaternary 
centers.40 Given our interests in the asymmetric construction of all-carbon 
quaternary stereocenters, we focused our attention toward an 
enantioselective variant of this transformation. Described herein are recent 
developments in the field of palladium-catalyzed conjugate addition toward 
the asymmetric construction of all-carbon quaternary centers. 
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Reaction Development and Substrate Scope 
 

In 2011 our laboratory disclosed the first report of an asymmetric 
palladium-catalyzed conjugate addition to generate all-carbon quaternary 
stereocenters.41  Our studies revealed that chiral pyridineoxazoline (PyOx) 
ligands (L4-L9) complexed to Pd(OCOCF3)2 were particularly adept in 
providing the conjugate addition products in high yield. Other chiral ligands 
such as bisoxazoline (L1), pyridinebisoxazoline (L2), and (–)-spartine (L3) did 
not give rise to catalytically active palladium complexes. The palladium 
catalyst derived from t-BuPyOx (L7) provided the highest levels of 
enantioselectivity, whereas ligands derived from phenylalanine (L4), leucine 
(L5), or valine (L6) provided significantly lower levels of enantioselectivity. 
Finally, electronic rich (L8), and electron poor (L9) t-BuPyOx derivatives were 
both inferior to the unsubstituted variant (Table 1). While t-BuPyOx can be 
synthesized in one step from methyl picolinimidate and tert-leucinol, the 
two-step procedure outlined in the original Organic Syntheses article was 
more efficient to produce larger quantities of t-BuPyOx in our hands.  

 
Table 1. Investigation of Chiral Ligands 
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Our initial report details the addition of a wide variety of boronic acids 
including electron rich (product 3), electron poor (products 4 and 5), and 
boronic acids containing potentially reactive functional groups such as 
ketones (product 5). Notably, electron rich boronic acids tend to exhibit lower 
levels of enantioselectivity. With respect to the enone component, the 
reaction of five-, six-, and seven-membered rings were well tolerated 
(products 6, 7, and 8 respectively). Moreover, substrates with increased steric 
hindrance about the enone react smoothly under the standard reaction 
conditions to generate highly congested all-carbon quaternary centers 
(products 9 and 10). After our initial report, Stanley and coworkers disclosed 
a similar study that details the conjugate addition of arylboronic acids to 
β-aryl α,β-unsaturated ketones to yield enantioenriched bis-benzylic 
quaternary stereocenters.42  

Table 2. Selected substrate scope 
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scalability.43 An important feature of our proposed mechanism is the 
enantiodetermining carbopalladation to provide the palladium(II) enolate 
(IV), which must then be protonated to close the catalytic cycle (Scheme 1B). 
We initially hypothesized that the boronic acid could act as a proton source 
to turn over the catalytic cycle; however, the lack of scalability of the reaction 
caused us to reconsider this hypothesis. We posited that addition of an 
external proton source would be beneficial for the reaction. To our delight, 
addition of 5 equivalents of water to the previously employed reaction 
conditions allowed for facile scale-up of this process with no change in yield 
or enantioselectivity (Scheme 1A, Eq. 2). 

 

 
Scheme 1. Gram-scale reaction and role of water 
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We then turned our attention to the addition of metal salts containing 
weakly coordinating counter ions (PF6

–, SbF6
–, BF4

–, etc) in an effort to 
improve the activity of the palladium catalyst. This would allow for lower 
catalyst loadings and lower reaction temperatures. We hypothesize that 
weakly coordinating anions could undergo a salt metathesis with the 
palladium(II) trifluoroacetate, resulting in a more reactive, cationic 
palladium(II) species. In line with our hypothesis, addition of NaCl (Table 3, 
entry 1) inhibited reactivity, presumably due to the strongly coordinating 
nature of chloride anion. Conversely, when sodium salts bearing weakly 
coordinating counterions were employed, enhanced reactivity was observed 
(Table 3, entries 2–4); however, the enantioselectivity of the process was 
diminished. Enantioselectivity could be restored at the expense of the 
reaction rate when tetrabutylammonium salts were employed (Table 3, 
entries 5–6). Sodium tetraphenylborate (Table 3, entry 7) failed to promote 
the desired reactivity due to concomitant formation of biphenyl, presumably 
via an oxidative coupling of the tetraphenylborate nucleophile. Finally, 
ammonium salts were effective in providing an optimal balance of reactivity 
and enantioselectivity (Table 3, entries 8–9), with the hexafluorophosphate 
anion yielding the best result (Table 3, entry 9). 

 
Table 3. Effect of Salt Additives 
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loadings to provide product 2 in essentially the same yield and 
enantioselectivity as the standard reaction conditions (Scheme 2A). 
Moreover, the addition of water, and NH4PF6 allows for more efficient 
reaction of substrates that proved difficult under the initial set of conditions 
(Scheme 2B). 

 

 
Scheme 2.  Low Catalyst Load and Reactivity of Difficult Substrates 
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pyridine-dihydroisoquinoline (PyDHIQ) ligands, and an oxygen atmosphere 
allowed for smooth reaction of C(2)-substituted chromenone electrophiles 
with excellent levels of enantioselectivity (Scheme 3B).46 Finally, we became 
interested in the reaction of 3-acyl cyclohexenones, a challenging substrate 
class due to the possibility of the formation of constitutional isomers. 
Employing palladium(II) trifluoroacetate and (S)-t-BuPyOx allows for 
selective formation of compound 20, which bears a quaternary stereocenter 
at the exclusion of forming a tertiary center via addition to the other end of 
the olefin (Scheme 3C).47 

 

 

Scheme 3. Selected Electrophile Examples 
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enantioselectivity, in a single pass. Enantioenriched flavanone 23 could then 
be carried forward through 5 more steps to generate >130 g of the active 
pharmaceutical ingredient 24  (Scheme 4).49  

 

 
Scheme 4. Synthesis of ABBV-2222 
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Scheme 5. Formal Synthesis of (+)-Dichroanone and (+)-

Taiwaniaquinone H 
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Scheme 6. Synthesis of (–)-Caesalpinflavens A and B  
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