Int = Average of normalized integrals values
MW = Molecular weight
P = Purity (as percent value)
m = mass
n = number of protons giving rise to a given NMR signal (The total number of protons is set to one because an average of all normalized integrals is carried out)

\[n_{DF} = 1 \quad n_2 = 1 \]
\[\text{Int}_{DF} = 0.9083 \quad \text{Int}_2 = 1.024 \]
\[\text{MW}_{DF} = 144.13 \text{ g/mol} \quad \text{MW}_2 = 204.34 \text{ g/mol} \]
\[\text{m}_{DF} = 12.8 \text{ mg} \quad \text{m}_2 = 19.4 \text{ mg} \]
\[P_{DF} = 97\% \]

\[P\% = \left(\frac{n_{DF} \cdot \text{Int}_2 \cdot \text{MW}_2 \cdot \text{m}_{DF}}{n_2 \cdot \text{Int}_{DF} \cdot \text{MW}_{DF} \cdot \text{m}_2} \right) \cdot P_{DF} = 102.3\% \]