Int = Average of normalized integrals values
MW = Molecular weight
P = Purity (as percent value)
m = mass
n = number of protons giving rise to a given NMR signal (The total number of protons is set to one because an average of all normalized integrals is carried out)

\[
\frac{n_{S}}{n_{P}} = 1 \\
\frac{\ln(n_{S})}{\ln(n_{P})} = 0.264 \\
\frac{MW_{S}}{MW_{P}} = 168.1 \text{ g/mol} \\
\frac{m_{S}}{m_{P}} = 8.8 \text{ mg} \\
\frac{P_{S}}{P_{P}} = 0.099
\]

\[
P \% = \frac{n_{S} \cdot \ln(n_{S}) \cdot MW_{P} \cdot m_{S} - P_{S}}{n_{P} \cdot \ln(n_{P}) \cdot MW_{S} \cdot m_{P} - P_{S}} \times 100 \% = 101 \%
\]