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PALLADIUM-CATALYZED ALKYL-ALKYL SUZUKI 

CROSS-COUPLINGS OF PRIMARY ALKYL BROMIDES AT 

ROOM TEMPERATURE: 

(13-CHLOROTRIDECYLOXY)TRIETHYLSILANE 

[Silane, [(13-chlorotridecyl)oxy]triethyl-] 
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1. Procedure 

 

A. 1-Bromo-8-chlorooctane (1). An oven-dried, 200-mL, two-necked, 

round-bottomed flask equipped with an argon inlet and a magnetic stirbar 

(octagonal, molded pivot ring, 25 mm length and 6 mm diameter) is purged 

with argon for 5 min and then charged through the open neck with CH2Cl2 

(50 mL via syringe) (Note 1), imidazole (2.19 g, 32.1 mmol, 1.10 equiv) 

(Note 2), and dichlorotriphenylphosphorane (10.4 g, 31.2 mmol, 1.07 equiv) 

(Note 3). The open neck is capped with a rubber septum, and the stirred 

solution is cooled in an ice bath for 5 min. A solution of 8-bromo-1-octanol 

(5.0 mL, 6.11 g, 29.2 mmol, 1.00 equiv) (Note 4) in CH2Cl2 (10 mL) (Note 1) 

is added via syringe over 5 min. The reaction mixture is allowed to warm to 
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rt, and the resulting heterogeneous solution (a white precipitate formed) is 

stirred for 4 h. The progress of the reaction is followed by TLC analysis on 

SiO2 (10% EtOAc/hexanes as the eluent; visualization with a KMnO4 stain; 

the alcohol starting material has an Rf = 0.2, and the chloride product has an 

Rf = 0.9) (Note 5). After the alcohol is consumed, the reaction is diluted with 

pentane (200 mL), and the mixture is filtered through a pad of SiO2 (7 cm 

diameter  6 cm height) in a sintered glass funnel. The SiO2 is washed with 

additional pentane (400 mL). The filtrate is concentrated by rotary 

evaporation (20 mmHg, 30 °C), which furnishes the desired product as a 

colorless oil (6.23–6.44 g, 94–97 % yield) (Note 6). The product is used in 

the next step without further purification. 

B. Triethyl(pent-4-enyloxy)silane (2). An oven-dried, 200-mL, 

two-necked, round-bottomed flask equipped with an argon inlet and a 

magnetic stirbar (octagonal, molded pivot ring, 25 mm length and 6 mm 

diameter) is purged with argon for 5 min and then charged through the open 

neck with N,N-dimethylformamide (50 mL via syringe) (Note 7), 

4-penten-1-ol (8.93 mL via syringe, 7.50 g, 87.1 mmol, 1.00 equiv) (Note 8), 

and imidazole (5.93 g, 87.1 mmol, 1.00 equiv) (Note 2). The open neck is 

capped with a rubber septum. The stirred solution is cooled in an ice bath for 

5 min, and then chlorotriethylsilane (14.6 mL, 13.1 g, 87.1 mmol, 1.00 equiv) 

(Note 9) is added over 4 min via syringe. The reaction mixture is stirred at rt 

for 24 h. The progress of the reaction is followed by TLC analysis on SiO2 

(20% EtOAc/hexanes as the eluent; visualization with a KMnO4 stain; the 

alcohol starting material has an Rf = 0.2, and the silyl ether product has an Rf 

= 0.7) (Note 5). After the alcohol has been consumed, the reaction mixture is 

poured into a mixture of pentane (300 mL) and water (60 mL) in a 500-mL 

separatory funnel. The organic layer is separated and washed with brine (3  

50 mL). The organic solution is dried over MgSO4 (30 g) and then vacuum 

filtered through a Büchner funnel containing a bed of celite (1.0 cm height). 

The filtrate is concentrated by rotary evaporation (20 mmHg, 30 °C), and the 

residue is transferred to a 50-mL round-bottomed flask equipped with a 

magnetic stirbar (octagonal, molded pivot ring, 15 mm length and 7 mm 

diameter) and a short-path distillation head. The residue is distilled under 

vacuum (bp 77–79 °C at 8 mmHg), which provides the desired silyl ether 2 

as a colorless oil (15.2–15.7 g, 87–90% yield) (Note 10). 

 C. (5-(9-Borabicyclo[3.3.1]nonan-9-yl)pentyloxy)triethylsilane (3). An 

oven-dried, 200-mL, round-bottomed flask equipped with an argon inlet and 

a magnetic stirbar (octagonal, molded pivot ring, 25 mm length and 6 mm 
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diameter) is purged with argon for 10 min. The open neck is capped with a 

rubber septum, and then a solution of 9-borabicyclo[3.3.1]nonane (9-BBN; 

0.50 M in THF; 72 mL, 36 mmol, 1.0 equiv) (Note 11) is added via syringe. 

Next, triethyl(pent-4-enyloxy)silane (2) (7.21 g, 36.0 mmol, 1.0 equiv) is 

added via syringe over 3 min to the solution of 9-BBN. The reaction mixture 

is stirred for 3 h, at which time all of the starting olefin is consumed as 

determined by TLC analysis (pentane as the eluent; visualization with a 

KMnO4 stain; the olefin starting material has an Rf = 0.2) (Note 5). This 

solution is used directly in the next step. 

D. (13-Chlorotridecyloxy)triethylsilane (4). An oven-dried, 1000-mL, 

three-necked, round-bottomed flask equipped with a thermometer inlet, a 

thermometer, a magnetic stir bar (octagonal, molded pivot ring, 40 mm 

length and 10 mm diameter), and an argon inlet is purged with argon for 10 

min. Palladium(II) acetate (270 mg, 1.20 mmol, 0.040 equiv) (Note 12), 

tricyclohexylphosphine (673 mg, 2.40 mmol, 0.080 equiv) (Note 13), and 

tripotassium phosphate, monohydrate (K3PO4·H2O; 8.28 g, 36.0 mmol, 1.2 

equiv) (Note 14) are added through the open neck of the flask. Then, the 

open neck is capped with a rubber septum, and the solution of 

(5-(9-borabicyclo[3.3.1]nonan-9-yl)-pentyloxy)triethylsilane (3) prepared in 

Step C (36 mmol, 1.2 equiv) is added to the flask via syringe, followed by 

the addition of 1-bromo-8-chlorooctane (1) (6.83 g, 30.0 mmol, 1.0 equiv). 

The resulting dark-brown heterogeneous reaction mixture is stirred 

vigorously at rt for 24 h. The progress of the reaction is followed by TLC 

analysis on SiO2 (25% CH2Cl2/hexanes as the eluent; visualization with a 

KMnO4 stain; the alkyl bromide starting material has an Rf = 0.5, and the 

cross-coupling product has an Rf = 0.4) (Note 5). Next, the mixture is diluted 

with diethyl ether (200 mL) and filtered through a sintered glass funnel 

containing SiO2 (7.0 cm diameter  5.0 cm height). The SiO2 is washed with 

additional diethyl ether (200 mL), and the combined filtrate is concentrated 

by rotary evaporation (20 mmHg, 30 °C). The residue is purified by column 

chromatography on SiO2 (Note 15). The desired cross-coupling product 4 

has Rf = 0.7 (TLC analysis on SiO2: 50% CH2Cl2/hexanes as eluent, 

visualization with KMnO4) (Note 5). The cross-coupling product is obtained 

as a pale-yellow oil (9.63–10.10 g, 92–96% yield) (Note 16). 
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2. Notes 

 

1.  Dichloromethane (>99.5%) was purchased from Kanto Chemical 

Co., Inc. (water content <0.001%) and purified by Glass Contour solvent 

systems. The submitters purchased dichloromethane (>99.8%) from J.T. 

Baker (water content <0.02%), which was purified by passage through 

activated alumina under argon. 

2.  Imidazole (99%) was purchased from Alfa Aesar and used as 

received. 

3.  Dichlorotriphenylphosphorane (95%) was purchased from Aldrich 

and used as received. 

4.  8-Bromo-1-octanol (95%) was purchased from Alfa Aesar and 

used as received. 

5.  Analytical thin-layer chromatography was performed using Merck 

silica gel 60 F254 plates (0.25 mm). 

6.  Compound 1 has the following properties: IR (film): 2931, 2855, 

1457, 1291, 1245, 913 cm
-1

; 
1
H NMR (CDCl3, 400 MHz) : 1.31–1.35 (m, 4 

H), 1.40–1.47 (m, 4 H), 1.75–1.81 (m, 2 H), 1.82–1.89 (m, 2 H), 3.41 (t, J = 

7.0 Hz, 2 H), 3.54 (t, J = 7.0 Hz, 2 H); 
13

C NMR (CDCl3, 100 MHz) : 26.7, 

28.0, 28.6, 28.7, 32.5, 32.7, 34.0, 45.1; Anal. Calcd. for C8H17BrCl: C, 42.22; 

H, 7.09; N, 0; found: C, 41.94; H, 6.85; N, 0. The spectral data are in 

agreement with the reported values.
2
 Compound 1 can be purified via 

column chromatography on SiO2, eluting with pentane (Rf = 0.6, pentane; 

visualization with KMnO4). 

7.  N,N-Dimethylformamide (>99.5) was purchased from Wako Pure 

Chemical Industries, Ltd. and used as received.  The submitters purchased 

N,N-dimethylformamide (ACS reagent grade) from MP Biomedicals, LLC 

and used it as received. 

8.  4-Penten-1-ol (98+%) was purchased from Alfa Aesar and used as 

received. 

9.  Chlorotriethylsilane (98+%) was purchased from Alfa Aesar and 

used as received. 

10.  Compound 2 has the following properties: IR (film): 2947, 2884, 

2826, 1653, 1457, 1418, 1015, 743 cm
-1

; 
1
H NMR (CDCl3, 400 MHz) : 

0.60 (q, J = 8.0 Hz, 6 H), 0.96 (t, J = 8.0 Hz, 9 H), 1.60–1.66 (m, 2 H), 2.11 

(q, J = 6.8 Hz, 2 H), 3.62 (t, J = 6.4 Hz, 2 H), 4.94–5.05 (m, 2 H), 5.79–5.86 

(m, 1 H); 
13

C NMR (CDCl3, 100 MHz) : 4.4, 6.8, 30.1, 32.0, 62.3, 114.5, 

138.5; LRMS (DART) m/z calcd. for C11H25OSi ([M+H]
+
) 201.2; found 
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201.2. The spectral data are in agreement with the reported values.
2
 

11.  The solution of 9-BBN (0.50 M in THF) was purchased from 

Aldrich and used as received. 

12.  Pd(OAc)2 (99+%) was purchased from Strem and used as received. 

13.  PCy3 (97%) was purchased from Strem and used as received. 

14.  Tripotassium phosphate, monohydrate ( 94%) was purchased from 

Fluka and used as received. When anhydrous tripotassium phosphate is 

employed, essentially no cross-coupling is observed. 

15.  Column chromatography was performed on Kanto Chemical Silica 

Gel 60N (wet packed in hexanes; 7 cm diameter  13 cm height; 200 g), 

eluting with a gradient of CH2Cl2 in hexanes (500 mL of hexanes, 500 mL of 

5% CH2Cl2/hexanes, 1.0 L of 10% CH2Cl2/hexanes, 1.0 L of 15% 

CH2Cl2/hexanes; 100-mL fractions). All of the fractions (8-26) containing 

the desired product were combined and concentrated by rotary evaporation 

(20 mmHg, 30 °C). 

16.  Compound 4 has the following properties: IR (film): 2926, 2875, 

2854, 1459, 1414, 1384, 1238, 1098, 1007, 913, 735 cm
-1

; 
1
H NMR (CDCl3, 

400 MHz) : 0.60 (q, J = 8.0 Hz, 6 H), 0.96 (t, J = 8.0 Hz, 9 H), 1.26–1.28 

(m, 16 H), 1.39–1.45 (m, 2 H), 1.50–1.56 (m, 2 H), 1.73–1.80 (m, 2 H), 3.53 

(t, J = 6.8 Hz, 2 H), 3.59 (t, J = 6.4 Hz, 2 H); 
13

C NMR (CDCl3, 100 MHz) : 

4.4, 6.8, 25.8, 26.9, 28.9, 29.47, 29.54, 29.59, 29.60, 29.62, 32.6, 32.9, 45.2, 

63.0; LRMS (DART) m/z calcd. for C19H42ClOSi ([M+H]
+
) 349.3, found 

349.3; Anal. calcd. for C11H42OSi: C, 65.93; H, 12.07; N, 0; found: C, 65.99; 

H, 11.80; N, 0. The spectral data are in agreement with the reported values.
2
  

 

Safety and Waste Disposal Information 

 

 All hazardous materials should be handled and disposed of in accordance 

with “Prudent Practices in the Laboratory”; National Academy Press; 

Washington, DC, 1995. 

 

3. Discussion 

 

 The palladium-catalyzed coupling of organometallic compounds with 

aryl and vinyl halides is a now-classic method for carbon carbon bond 

formation.
3
 In contrast, until recently, the corresponding reactions of alkyl 

halides were relatively uncommon.
3
 Slow oxidative addition and facile 

-hydride elimination have been suggested as two of the possible culprits for 
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this comparative lack of success (Scheme 1). With respect to the Suzuki 

reaction, prior to 2001 only one somewhat general method had been 

described for achieving cross-couplings of unactivated, -hydrogen 

containing alkyl electrophiles, specifically, a Pd(PPh3)4-catalyzed process 

for coupling alkyl iodides.
5
 

 

Scheme 1. A Generalized Mechanism for Palladium-Catalyzed 

Cross-Coupling of an Alkyl Electrophile. 
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 We have determined that, through the appropriate choice of ligand, 

palladium-catalyzed Suzuki cross-couplings can be accomplished with an 

array of unactivated alkyl bromides, chlorides, and tosylates that bear  

hydrogens.
2,6,7

 Specifically, bulky electron-rich trialkylphosphines furnish 

particularly active catalysts. For example, in the case of alkyl bromides, 

Pd(OAc)2/PCy3 achieves the desired coupling under mild conditions (room 

temperature; Table 1). The process is compatible with a broad spectrum of 

functional groups, including amines, alkenes, esters, alkynes, ethers, and 

nitriles. Furthermore, an alkyl bromide can be cross-coupled selectively in 

the presence of an alkyl chloride (equation D). Not only alkylboranes 

(entries 1-6), but also vinylboranes (entry 7), serve as suitable coupling 

partners. 
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Table 1. Pd/PCy3-Catalyzed Suzuki Cross-Couplings of Unactivated Alkyl 

Bromides at Room Temperature. 
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This method for Suzuki coupling of alkyl bromides has been employed 

by others, e.g., by Phillips to achieve late-stage fragment couplings in 

natural-product total synthesis (Scheme 2).
8
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Scheme 2. Applications in Total Synthesis of Pd/PCy3-Catalyzed 

Alkyl–Alkyl Suzuki Reactions: Fragment Couplings. 

 

OMe

OMe

O

O

(+)-spirolaxine methyl ether

(9-BBN)+O

O

Me

Br

O

O

Me

OMe

OMe

O

O

5% Pd/PCy3

(+)-Pyranicin

(+)-Spirolaxine methyl ether

On-C12H25

(9-BBN)
TBSO

H H
OTBS

OTBS

Br

TBDPSO
O

O

Me

+

On-C12H25

TBSO

H H
OTBS

OTBS TBDPSO
O

O

Me
60% 20% Pd/PCy3

two steps

On-C12H25

HO

H H
OH

OH OH
O

O

Me

(+)-pyranicin

79%

 
 

 

 

1.  Department of Chemistry, Room 18-290, Massachusetts Institute of 

Technology, Cambridge, Massachusetts 02139; E-mail: gcf@mit.edu. 

2. Netherton, M. R.; Dai, C.; Neuschütz, K.; Fu, G. C. J. Am. Chem. Soc. 

2001, 123, 10099–10100. 

3. For some leading references, see: (a) Metal-Catalyzed Cross-Coupling 



Org. Syn. 2010, 87, 299-309  307 

Reactions; de Meijere, A., Diederich, F., Eds.; Wiley–VCH: New York, 

2004. (b) Cross-Coupling Reactions: A Practical Guide; Miyaura, N., 

Ed.; Topics in Current Chemistry Series 219; Springer-Verlag: New 

York, 2002. (c) Handbook of Organopalladium Chemistry for Organic 

Synthesis; Negishi, E.-i., Ed.; Wiley Interscience: New York, 2002. 

4. For overviews, see: (a) Frisch, A. C.; Beller, M. Angew. Chem., Int. Ed. 

2005, 44, 674–688. (b) Netherton, M. R.; Fu, G. C. Topics in 

Organometallic Chemistry: Palladium in Organic Synthesis; Tsuji, J., 

Ed.; Springer: New York, 2005; pp 85–108. 

5. Ishiyama, T.; Abe, S.; Miyaura, N.; Suzuki, A. Chem. Lett. 1992, 

691–694. 

6. (a) Alkyl chlorides and trialkylboranes: Kirchhoff, J. H.; Dai, C.; Fu, G. 

C. Angew. Chem., Int. Ed. 2002, 41, 1945–1947. (b) Alkyl tosylates and 

trialkylboranes: Netherton, M. R.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 

41, 3910–3912. (c) Alkyl bromides and boronic acids: Kirchhoff, J. H.; 

Netherton, M. R.; Hills, I. D.; Fu, G. C. J. Am. Chem. Soc. 2002, 124, 

13662–13663. 

7. For mechanistic studies, see: (a) References 2 and 6. (b) Hills, I. D.; 

Netherton, M. R.; Fu, G. C. Angew. Chem., Int. Ed. 2003, 42, 

5749–5752. 

8. (a) Keaton, K. A.; Phillips, A. J. Org. Lett. 2007, 9, 2717–2719. (b) 

Griggs, N. D.; Phillips, A. J. Org. Lett. 2008, 10, 4955–4957. 

 

 

 

Appendix 

Chemical Abstracts Nomenclature; (Registry Number) 

 

8-Bromo-1-octanol: 1-Octanol, 8-bromo-; (50816-19-8) 

Dichlorotriphenylphosphorane: Phosphorane, dichlorotriphenyl-; 

(2526-64-9) 

Imidazole: 1H-Imidazole; (288-32-4) 

1-Bromo-8-chlorooctane: Octane, 1-bromo-8-chloro-; (28598-82-5) 

4-Penten-1-ol; (821-09-0) 

Chlorotriethylsilane: Silane, chlorotriethyl-; (994-30-9) 

Triethyl(pent-4-enyloxy)silane: Silane, triethyl(4-penten-1-yloxy)-; 

(374755-00-7) 

9-BBN: 9-Borabicyclo[3.3.1]nonane; (280-64-8) 
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(5-(9-Borabicyclo[3.3.1]nonan-9-yl)pentyloxy)triethylsilane: 

9-Borabicyclo[3.3.1]nonane, 9-[5-[(triethylsilyl)oxy]pentyl]-; 

(157123-09-6) 

Palladium(II) acetate: Acetic acid, palladium(2+) salt (2:1); (3375-31-3) 

Tricyclohexylphosphine: Phosphine, tricyclohexyl-; (2622-14-2) 

Tripotassium phosphate, monohydrate: Phosphoric acid, tripotassium salt, 

monohydrate (8CI,9CI); (27176-10-9) 

(13-Chlorotridecyloxy)triethylsilane: Silane, 

[(13-chlorotridecyl)oxy]triethyl-; (374754-99-1) 
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