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A review on the dehydrative functionalization of various phosphorus 
species with alcohols was published in 2019.2 Various methods exist for the 
preparation of allylic H-phosphinates, including allylation of a 
hypophosphorous acid (H3PO2) equivalent with allylic halides.3 However, 
this approach is not atom-economical, requires a base, and the yields are 
generally moderate.  In 2006, we introduced the palladium-catalyzed direct 
dehydrative allylation of hypophosphorous acid with allylic alcohols,4 on 
which was based the 2008 Organic Syntheses article.5  Also in 2008 was 
published a full paper, which dealt in part with this reaction.6  A great feature 
of the original reaction is since the product is an acid, a simple extractive 
work-up can be employed to give products of generally high purity.  
However, in many instances the H-phosphinate ester product may be more 
desirable for subsequent reactions.  Whereas the Dean-Stark esterification of 
H-phosphinic acids proceeds well,7 it is limited in terms of the ester moiety 
and is less convenient on small scales.  On the other hand, we showed that H-
phosphinic acids can be esterified with alkoxysilanes.8  Thus, direct treatment 
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of the crude allylation reaction mixtures in DMF with tetrabutoxysilane for 
10-16 h at 85 oC gave the corresponding butyl esters, which were isolated by 
chromatography over silica gel in good to excellent yields.  Nonetheless, the 
yields of the allylation/esterification sequence6 are a little lower than with the 
direct extraction.5  In the simplest case of allyl alcohol, a 43% yield of allyl H-
phosphinic acid was isolated after extractive work-up.  This is likely due to 
the more difficult handling and lower hydrolytic stability of the more polar, 
low molecular weight product.  In this case, DBU-promoted alkylation of 
alkyl phosphinates with allyl bromide was superior.3g   

The 2008 full paper also examined the mechanism of the reaction and the 
related allylation with allylic acetates, benzoates, and carbonates.6  It is 
interesting to note that these substrates performed well, and that DMF could 
be substituted with CH3CN.  

In this addendum to our original article, we summarize recent extensions 
in the scope of the methodology, which include replacing hypophosphorous 
acid with H-phosphinic acids and their esters, using allylic amines or benzylic 
alcohols instead of allylic alcohols.  Some synthetic applications are also 
included. 

 
Extension to the Synthesis of Disubstituted Phosphinic Acids 

 
The Pd-catalyzed allylation of hypophosphorous acid (H3PO2) with 

allylic alcohols4-6 was subsequently extended to the less reactive H-
phosphinic acids (RPO2H2) as shown in Scheme 1.10  The reactivity of 
phosphinylidene compounds R1R2P(=O)H correlates with the ease of - or 
rather the less difficult - tautomerization to R1R2P-OH, and this can be 
experimentally determined by measuring the rate of deuteration of 
R1R2P(=O)H into R1R2P(=O)D.10  

Reactivity/rate of tautomerization increases from electron-donating to 
less electron-donating, to electron-withdrawing substituents.11  For example, 
the half-life of deuteration of H3PO3, OctPO2H2, PhPO2H2, and H3PO2, are: 49 
h, 5.4 h, 55 min, and 3 min, respectively.  Thus, the Pd-catalyzed allylation of 
H-phosphinic acids is intrinsically more difficult than of hypophosphorous 
acid and requires more forcing conditions.9  First, the reaction solvent and 
temperature were changed from DMF4 at 85 oC to t-AmOH at reflux (102 oC) 
in the presence of molecular sieves (3Å, 1 g/mmol) or a Dean-Stark trap.  Part 
of the success of t-amyl alcohol is attributed to the stabilization of the 
RP(OH)2 tautomer via hydrogen-bonding.  Second, the catalyst loading 
required was generally 2 mol% Pd/xantphos (versus 0.5 mol% when H3PO2 
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was the reaction partner).  With these modifications, a variety of 
disubstituted phosphinic acids could be obtained in good to moderate yield 
after esterification (BnBr/Ag2O).9  Again, cinnamyl alcohol proved to be a 
superb allylating agent. 

 

 
 
Scheme 1. Palladium-catalyzed allylation of H-phosphinic acids. 

 
 
 

Extension to Allylic Amines 
 

In 2014, Tian and coworkers published the analogous allylation of 
hypophosphorous acid and H-phosphinic acids with (protonated) allylic 
amines.12  As in our reactions, H3PO2 is much more reactive than RPO2H2, so 
Pd/xantphos loadings of 0.2 mol% in CH3CN and 2 mol% in t-AmOH were 
used respectively.  Scheme 2 shows some of the results. 
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Scheme 2. Palladium-catalyzed allylation of hypophosphorous acid and H-
phosphinic acids with primary allylic amines (22 examples, 68-98 %). 

 
 

Extension to Benzylation 
 
Having developed the successful allylation of the less reactive H-

phosphinic acids, we then turned our attention to replacing allylic alcohols 
with benzylic ones.  Since the palladium insertion into a benzylic electrophile 
is significantly more difficult than into an allylic one, more demanding 
reaction conditions were expected.  Higher loadings were necessary as well 
as higher reaction temperature (Scheme 3).13 

Two examples of benzylation of H-phosphinic acid were also provided.  
Finally, the benzylation of (R)-1-(2-naphthyl)ethanol (97% ee) proceeded in 
good yield but with significant erosion of the ee to 77%. 
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Scheme 3. Direct, palladium-catalyzed benzylation of hypophosphorous acid 
with benzylic and heterobenzylic alcohols. 

 
 
 

Extension to H-Phosphinate Esters and Related Compounds 
 

 Exactly ten years after the publication of our original reaction,4 we 
decided to investigate the reaction of H-phosphinate esters.  Based on 
mechanistic studies and the resulting postulated mechanism of the 
allylation/benzylation, esterification of hypophosphorous acid or H-
phosphinic acid is the first step of the transformation.  Thus, we did not think 
that H-phosphinate esters could give the desired product.  However, this 
assumption was wrong and both allylation and benzylation were 
accomplished with  somewhat narrower scope than those described above.14  
This could be explained by the generally more electron donating nature of 
the R ester group compared to R=H in the acid, and therefore the ester is less 
reactive than the acid.  Indeed, the half-life of deuteration of n-
OctP(O)(OEt)H, OctPO2H2, PhP(O)(OEt)H and PhPO2H2, are: 8.2 h, 5.4 h, 1.4 
h, and 55 min, respectively.10  With cinnamyl alcohol, even rather unreactive 
phosphorus compounds like diethyl H-phosphonate gave good results 
(Scheme 4).14 
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Scheme 4. Palladium-catalyzed reaction of various phosphorus compounds 
with cinnamyl alcohol. 

 
Additional results with different allylic and benzylic alcohols are 

summarized in Scheme 5.14  Not shown in Scheme 5 is the reaction between 
diethyl H-phosphonate and benzyl alcohol, which gives only 23% of product 
(31P-NMR yield).  Fortunately, Arbuzov-type reactions have been described 
to prepare phosphonate diesters from the corresponding benzylic and allylic 
alcohols.15,16 

 

 
 
Scheme 5. Palladium-catalyzed reaction of various H-phosphinate esters 
with allylic and benzylic alcohols. 
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Synthetic Applications 
 

If the original conditions are followed by heating in air at 110 oC, the 
product can be directly converted into the corresponding phosphonic acid 
(Scheme 6).17 

 

 
Scheme 6. One-pot allylation/oxidation preparation of cinnamyl phosphonic 
acid. 
 

The reaction can also be used to prepare various P-heterocycles (Scheme 
7).  In 2008, butyl cinnamyl-H-phosphinate 1 was allylated through a sila-
Arbuzov reaction to 2 or esterified using the Atherton-Todd reaction to 
produce 3.  Both intermediates were cyclized via Grubbs' ring-closing 
metathesis using catalyst 4, to P-heterocycles 5 and 6, respectively.6 

The same year, the allylation of H-phosphinic acids became available and 
symmetrical bis(cinnamyl)phosphinic acid 7 could be synthesized directly in 
quantitative yield.9 Silver-promoted esterification gave 8, which was 
submitted to ring-closing metathesis.  Because of the alkene substitution, the 
reaction required a higher catalyst loading and the yield was lower.  From 
intermediate 8, a different type of heterocycle 10 could be prepared via 
ozonolysis and double reductive amination.  

Later on, once we discovered that H-phosphinate esters could also be 
allylated, an improved synthesis of heterocycle 5 became possible (Scheme 7, 
Montchamp 2016).14 Monoallylation of hypophosphorous acid to prepare 11 
proceeded in excellent yield.4,5 Because H-phosphinic acids like 11 can be 
esterified via azeotropic distillation but disubstituted phosphinic acids like 7 
cannot, this allows an inexpensive and efficient access to 1.  Allylation of 1 
with allylic alcohol produces intermediate 2, this time in a very efficient 
sequence with only water as a byproduct in each step.  Ring closing 
metathesis forms heterocycle 5 and the yield was improved over the initial 
cyclization of 2.  This streamlined synthesis produces 5 in 4 steps and 70% 
overall yield. 
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Scheme 7. Preparation of P-heterocycles using the synthesis of allylic 
precursors. 
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In connection with studies aiming at the preparation of aspartate 
transcarbamoylase (ATCase) inhibitors, ozonolysis of allylated precursors 
was a key step (Scheme 8).  Ozonolysis of 8 as in Scheme 7, but this time using 
benzylated aspartic acid in the reductive amination step, gave heterocycle 12.  
Straightforward debenzylation gave 13, which unfortunately showed no 
inhibition.18 

Cinnamyl-H-phosphinic acid 11 was protected with triethylorthoacetate 
and the resulting 14 was ozonolyzed and oxidized to carboxylic acid 15.  
Simple carbodiimide amidation gave 16, which was subsequently 
deprotected to give 17.  Compound 17 is a competitive inhibitor with an 
inhibition constant of 420 nM, which is approximately 25 times less potent 
than the known phosphonic acid and anticancer agent PALA.19  

 
 

 
 
Scheme 8. Preparation of potential inhibitors of aspartate transcarbamoylase. 
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(Scheme 9).  Dehydrative allylation of 18 under the usual conditions 
proceeded stereospecifically and gave 19 in nearly quantitative yield.  It 
should be noted that the half-life of deuteration for 18 is remarkably short at 
only 7 min,21 thus indicating an unusual reactivity.  Reduction of the double-
bond to 20 followed by Corey-Kim oxidation delivered menthyl H-
phosphinate 21 in excellent yield and very slight erosion of the 
diastereoselectivity.  Cyclization then gave heterocycle 22, stereospecifically 
and in excellent yield. 
 
 

 
 
Scheme 9. Preparation of a chiral P-heterocycle. 
 

Additionally, the reaction below has been used for the preparation of a 
corrosion inhibitor.22 Palladium-catalyzed allylation of geraniol and 
oxidation gave geranylphosphonic acid in 60% overall yield (Scheme 10). 
 

 
 
Scheme 10. Preparation of geranylphosphonic acid. 
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