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It has been well-documented that a properly designed phosphine ligand 
is the key to advance cross-coupling processes.  By strategically manipulating 
the phosphine ligand skeleton and thereby the geometry of the 
corresponding metal complexes, numerous transition metal-catalyzed cross-
coupling processes have been successfully developed.2  Various research 
groups have designed and synthesized supporting ligands to tackle 
challenging coupling reactions, such as Pt-Bu3,3 Buchwald ligands,4 Josiphos,5 
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Tang ligands,6 Beller ligands,7 Zhang ligands8 and etc.9  Despite the 
advancement in developing a variety of phosphine ligands, the rapid 
assembly of a structurally diverse ligand library via simple synthetic methods 
remains essential for creating versatile catalysts for broader applications in 
coupling reactions. 

Our research group has been engaged in developing several series of 
indolylphosphine ligands,10 of which CM-phos has proven to be an excellent 
ligand for Pd-catalyzed C−C bond and C−N bond formation.11  The strategic 
considerations for designing such indolylphosphine ligands for coupling 
reactions include: (1) the use of inexpensive and readily available starting 
materials (i.e. arylhydrazine and acetophenone); (2) a simple and 
straightforward synthetic pathway (i.e. Fischer Indolization); (3) the ability to 
achieve a high level of steric and electronic fine-tuning for ligand diversity 
(Figure 1).  Based on the above strategies, the CM-phos scaffold was selected 
as a model template to design and explore a new series of phosphine ligands 
and their applications in Pd-catalyzed coupling reactions were investigated. 

 

 
Figure 1. Ligand Design and Diversity. 

 
 

Modification of the CM-phos at the Phosphorus Atom 
 

 
 

Scheme 1. Synthetic Pathway of Pi-Pr-CM-phos and PPh-CM-phos. 
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In 2015, the direct C-3 arylation of imidazo[1,2-a]pyridines with aryl 
tosylates was demonstrated.12  By replacing the dicyclohexyl groups on the 
phosphorus atom of CM-phos with the diisopropyl groups (Scheme 1), the 
catalytic performance significantly improved in the arylation reaction (i.e. 
CM-phos: 77% vs Pi-Pr-CM-phos: 88%).  Particularly, this Pd/Pi-Pr-CM-
phos catalyst system enabled the first successful example of the coupling 
between aryl mesylate and imidazo[1,2-a]pyridine (Scheme 2). 

 

 
 

Scheme 2. Palladium-Catalyzed Direct Arylation of Imidazo[1,2-
a]pyridines with Aryl Sulfonates. 

 
 

 
Scheme 3. Synthetic Pathway of Pt-Bu-CM-phos. 

 
Recently, a new ligand, Pt-Bu-CM-phos was prepared through a slightly 

modified phosphination process (Scheme 3).  Instead of using n-BuLi for a 
lithiation and subsequent trapping with chlorodialkylphosphine, 
magnesium was firstly added to react with the ligand precursor to form the 
Grignard reagent and followed by the addition of CuCl and di-tert-
butylchlorophosphine to afford the Pt-Bu-CM-phos in 23% yield.  The 
Pd/Pt-Bu-CM-phos catalyst system was then employed in a regioselective 
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palladium-catalyzed α-arylation of isophorone with 4-chloroanisole, 
achieving a 50% desired product yield (Scheme 4).13  Neither PPh-CM-phos 
(Scheme 1) nor CM-phos can promote the reaction effectively, demonstrating 
the importance of the bulky tert-butyl group at the phosphorus atom in the 
ligand scaffold.  Through the study of kinetic isotopic effect, it was observed 
that the reaction rate of α-arylation reaction with D8-isophorone was slower 
than that of the H8-isophorone (kH8-IP/kD8-IP = 1.7).  A control experiment 
using D5-isophorone as the coupling partner indicated that the reaction does 
not involve a C−H activation pathway but an isomerization process. 

 

 
 

Scheme 4. Palladium-Catalyzed α-Arylation of Isophorone with Aryl 
Halides. 
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Modification of the CM-phos at the 2-Aryl Segment 

 
 

Scheme 5. Synthetic Pathway of MeO-CM-phos, NMe2-CM-phos and 
(MeO)2-CM-phos. 

 
In general, oxidative addition is favored by electron-rich phosphine 

ligands, which promotes the electron density at the metal center.  In 2011, we 
designed a more electron-rich phosphine ligand by introducing a methoxy 
group at the para-position to the −PCy2 moiety on the CM-phos scaffold (i.e. 
MeO-CM-phos, Scheme 5), to facilitate the oxidative addition of aryl 
sulfonates in C−B bond coupling (Scheme 6).14 Notably, the first successful 
borylation of aryl mesylates and tosylates was achieved using this Pd/MeO-
CM-phos catalyst system. The more electron-rich phosphine ligand enabled 
the coupling of less reactive aryl sulfonates more efficiently than the original 
Pd/CM-phos catalyst system (i.e. 96% vs 86% yield respectively). 
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Scheme 6. Pd-Catalyzed Borylation of Aryl Mesylates and Tosylates. 
 

The same catalyst system can also be employed in the construction of 
C−N bonds between NH-sulfoximines and aryl/alkenyl tosylates or aryl 
mesylates (Scheme 7).15 Good functional group compatibility and good-to-
excellent product yields were exhibited.  Dialkylsulfoximines were also 
feasible coupling partners under this catalyst system.  It is notable that the 
electron-rich Pd/MeO-CM-phos resulted in a better catalytic efficacy than 
the previously reported Pd/CM-phos catalyst system (i.e. 94% vs 89% yield 
respectively). 
 

 
 

Scheme 7. Pd-Catalyzed N-arylation of Sulfoximines with Aryl Sulfonates 
and Alkenyl Tosylates. 
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Pd-catalyzed cross-coupling reaction between organotitanium reagents 
and aryl sulfonates was demonstrated in 2020.  By introducing an even more 
electron-donating dimethylamino group at the para position of the −PCy2-
containing arene (NMe2-CM-phos, Scheme 5), the oxidative addition process 
of inert C(Ar)−O bonds was further enhanced such that the NMe2-CM-phos 
gave the best catalytic performance when compared to ordinary CM-phos 
and MeO-CM-phos (Scheme 8) (i.e. 46% vs 16% vs 23% respectively).16  It is 
noteworthy that the catalyst loading can be down to 0.2 mol % and the 
reaction time can be shortened to 10 minutes.  
 

 
 

Scheme 8. Pd-Catalyzed Cross-Coupling of Aryl Titanium and 
Aryl/Alkenyl Sulfonates. 

 
In 2020, the first general palladium-catalyzed mono-N-arylation of 

arylhydrazines with aryl tosylates was reported.17  A more electron-enriched 
version of MeO-CM-phos was prepared by attaching one more methoxy 
group to the phenyl ring on the ligand skeleton ((MeO)2-CM-phos, Scheme 
5). The (MeO)2-CM-phos was shown to be more effective than the 
corresponding CM-phos and MeO-CM-phos in dealing with this arylation 
process (Scheme 9) (i.e. 85% vs 73% vs 80% respectively). 
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Scheme 9. Pd-Catalyzed Mono-N-arylation of Arylhydrazines with Aryl 
Tosylates. 

 
Modification of the CM-phos at the Indole Segment 

 

 
 

Scheme 10. Synthetic Pathway of 4,7-Me2-CM-phos. 
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The first general palladium-catalyzed mono-α-arylation of aryl- and 
heteroarylketones with aryl mesylates and tosylates was explored in 2016 
(Scheme 11).18  Previous studies had shown that electron-rich ligands tend to 
be ineffective against electron-deficient arene substrates in ketone arylation 
reactions, as reported in the literature.19  Therefore, turning attention from 
adjusting electronic properties to steric hindrance, the 4,7-Me2-CM-phos was 
specially designed by installation of two methyl groups at the 4,7-position of 
the indole segment of CM-phos scaffold (Scheme 10) to enhance the steric 
congestion for facilitating reductive elimination in ketone arylation reactions.  
Excellent chemo- and monoselectivity with a modest catalyst loading (0.25–
2.5 mol %) were attained under the Pd/4,7-Me2-CM-phos catalyst system. 

 

 
Scheme 11. Pd-Catalyzed Selective Mono-α-arylation of Acetophenone 

Enolate with Aryl Sulfonates. 
 

Summary 
 

A series of novel indolylphosphine ligands has been developed through 
targeted modifications of CM-phos at the phosphorus atom, 2-aryl segment 
and the indole segment. Such structural modifications have led to enhanced 
optimization of cross-coupling reactions, facilitating the use of lower catalytic 
loadings and accommodating a wider array of substrates. By increasing the 
electronic richness of CM-phos, challenging couplings involving aryl 
tosylates and mesylates as electrophilic coupling partners has been 
successfully achieved. Furthermore, the strategic addition or substitution of 
bulky groups within the ligand scaffold significantly promotes the reductive 
elimination process, thereby improving the overall catalytic efficacy. These 
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fine-tunings on steric and electronic properties allow the newly developed 
ligands to have remarkable performance across various cross-coupling 
reactions, particularly in the formation of C−C bonds and C−N bonds. 
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