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Palladium-catalyzed cross-coupling reactions have become a versatile 

tool in organic synthesis for the construction of carbon−carbon as well as 
carbon−heteroatom bonds.2  Notably, they have evolved into a synthetically 
attractive transformation in targeting pharmaceutically useful 
intermediates.3  Our research group has been engaged in developing several 
series of indolylphosphine ligands for numerous cross-coupling reactions.4 
In 2008, we reported the application of CM-phos, which showed excellent 
catalytic activities towards the first palladium-catalyzed amination (C−N 
bond formation) and Suzuki-Miyaura cross-coupling reaction (C−C bond 
formation) of aryl mesylates.5  The dimeric Pd-CM-phos complex also 
showed the same reactivity as in the in situ generated catalyst (Figure 1). Later, 
CM-phos has proven to be an excellent ligand6 for various Pd-catalyzed 
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cross-coupling reactions with aryl mesylates and tosylates (e.g., Hiyama 
coupling,7 Sonogashira coupling,8 reduction,9 titanium coupling,10 and C−H 
arylation).11 

 

 
Figure 1. X-ray crystal structure of dimeric Pd/CM-phos complex 

 
 

Further Investigations in Suzuki-Miyaura Cross-coupling of Aryl 
Mesylates/Tosylates 

 
The use of CM-phos as a supporting ligand allowed the expansion of the 

scope of Suzuki-Miyaura cross-coupling reactions. In 2008, an extension of 
the Suzuki-Miyaura coupling of (hetero)aryl tosylates was disclosed with 0.2 
mol% Pd, and the capability of deactivated tosylates as the coupling 
electrophiles was showcased (Scheme 1).12  Sterically hindered arylboronic 
acids, potassium aryltrifluoroborates and aryl pinacol boronates were 
suitable coupling nucleophiles, affording excellent product yields. Notably, 
the coupling of heteroaryl tosylates proceeded smoothly without deleterious 
effects on the product yield, even at room temperature. 

 



 

Org. Synth. 2024, 101, 438-459   DOI: 10.15227/orgsyn.101.438 440 

 
Scheme 1. Pd-Catalyzed Suzuki-Miyaura Cross-Coupling of (Hetero)aryl 

and Alkenyl Tosylates 
 

In 2010, the Suzuki-Miyaura coupling of (hetero)aryl mesylates with 
potassium aryltrifluoroborates was further examined (Scheme 2) using the 
Pd/CM-phos catalyst system.  Moderate-to-excellent product yields were 
achieved with a palladium loading of 1.0-2.5 mol%.13 Remarkably, potassium 
heteroaryltrifluoroborates were feasible partners in the coupling reactions. 
Specifically, the coupling of thienyl trifluoroborate salt resulted in higher 
yields compared to the corresponding thienylboronic acid, even with a lower 
catalyst loading and a shorter reaction time.  Furthermore, potassium vinyl- 
and alkyltrifluoroborate salts were also evaluated under this catalyst system 
and good product yields were obtained. 
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Scheme 2. Pd-Catalyzed Suzuki-Miyaura Cross-Coupling of (Hetero)aryl 

Mesylate and Potassium (Hetero)aryl/vinyl/alkyltrifluoroborates 
 

Subsequently, the Pd/CM-phos catalyst system was successfully 
employed in the general Suzuki-Miyaura coupling of alkenyl mesylates and 
tosylates (Scheme 3).14  The reactions proceeded under mild conditions (50 
°C), giving good-to-excellent product yields. Notably, hindered tri-ortho-
substituted coupling products were efficiently afforded from bulky alkenyl 
tosylates and arylboronic acids. Additionally, alkenyl mesylates containing a 
chloro substituent served as an effective coupling partner, and the chloro-
group remained intact which is beneficial for further transformations. 
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Scheme 3. Pd-Catalyzed Suzuki-Miyaura Cross-Coupling of Alkenyl 

Mesylates/Tosylates 
 

In 2019, the Pd/CM-phos catalyst system was extended to synthesize a 
diverse array of functionalized flavones, using tosyloxy- and 
mesyloxyflavones as substrates (Scheme 4A)15  The reaction proceeded 
smoothly with palladium loading as low as 0.1 mol%.  It was remarkable that 
the hydroxy group in tosyloxyflavone remained intact post-coupling.  
Furthermore, the catalyst system exhibited exceptional site selectivity 
towards ditosylated chrysin, facilitating the formation of the desired 
diarylated flavone with two distinct aryl groups (Scheme 4B). 
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Scheme 4. Pd-Catalyzed Suzuki-Miyaura Cross-Coupling of Mesyloxy/ 

Tosyloxyflavones and Its Applications in Site Selective Coupling 
 

Utilizing the Pd/CM-phos system, the synthesis of a flavone-scaffold-
containing inhibitor of DNA-dependent protein kinase was accomplished 
with an overall 30% yield,15 surpassing the productivity of the original 
synthetic approach in terms of yield (Scheme 5).16 
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Scheme 5. Synthesis of a DNA-dependent Protein Kinase by Pd-
Catalyzed Suzuki-Miyaura Cross-Coupling of Tosyloxyflavones 

 
 

In 2016, Zhang and co-workers applied the Pd2(dba)3/CM-phos catalyst 
system for the Suzuki-Miyaura coupling of gem-difluoroalkenyl tosyaltes 
with phenylboronic acid, affording the trisubstituted alkene with excellent 
yields (Scheme 6).17 

 

 
Scheme 6. Synthesis of gem-difluroroalkenylated arene through Suzuki-

Miyaura Coupling 
 

In 2020, a series of bridged (π-extended) stilbenes was investigated by 
Suzuki and Konishi, and it was discovered that BPST[7] and DPB[7] express 
superb aggregation-induced emission properties. In the synthesis of the 
bridged stilbenes, Pd(OAc)2/CM-phos served as the catalyst system in a 
critical step of coupling alkenyl tosylates with arylboronic acids (Scheme 7).18 
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Scheme 7. Synthesis of Bridged Stilbenes 

 
Further Investigations in Buchwald-Hartwig Amination of Aryl 

Mesylates/Tosylates 
 

The use of Pd/CM-phos catalyst system further allowed the expansion 
of the scope of Buchwald-Hartwig amination reactions.  After the first report 
of amination of aryl mesylates, an extension of the Buchwald-Hartwig 
amination of aryl/alkenyl tosylates was demonstrated with a diverse array 
of amines including arylamines, aliphatic amines, and NH-heterocycles 
(Scheme 8).19  In particular, α-chiral amines were also applicable, with 
enantioselectivity of the product being maintained despite the potential β-
elimination of the Pd-N-CHR2 intermediate. This prevents the subsequent 
reinsertion of the flipped C(sp2)-imine moiety, which would otherwise ruin 
the enantiomeric purity of the product.20  Remarkably, the amination 
proceeded smoothly in aqueous medium and solvent-free conditions without 
deleterious effect. 

 

 
Scheme 8. Pd-Catalyzed Amination of Aryl Tosylates 
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In 2019, the Pd-catalyzed amination of tosyloxyflavones was 

demonstrated using Pd/CM-phos catalyst system (Scheme 9).15 Arylamines 
and cyclic and acyclic aliphatic amines were coupled with the 
tosyloxyflavones to give the N-arylated products in good-to-excellent yields. 

 

 
Scheme 9. Pd-Catalyzed Amination of Tosyloxyflavones 

 
Cyanation is a crucial catalytic reaction, as the resulting nitrile group can 

be converted into a variety of functional groups.21  The Pd/CM-phos catalyst 
system was employed in the first Pd-catalyzed cyanation of aryl mesylates 
mediated by K4[Fe(CN)6]•3H2O (Scheme 10A).22  Interestingly, the use of 
water as a solvent or co-solvent is critical for the success of cyanation.  A one-
pot cascade synthesis of an N-aryl aminobenzonitrile was achieved through 
the cyanation of aryl tosylate followed by the N-arylation of the amino group 
(Scheme 10B).  This synthetic pathway is particularly attractive for further 
functionalization, as it eliminates the need to isolate the initial nitrile-
substituted intermediates. 
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Scheme 10. Pd-Catalyzed Cyanation and Sequential One-Pot Two-Step 

Cyanation/Amination 
 
Polyfluoroarenes are commonly found in biologically active compounds, 

pharmaceutically useful molecules,23 natural products, and functional 
materials.24  Palladium-catalyzed C–H arylation of polyfluoroarenes with 
aryl tosylates and mesylates using Pd/CM-phos catalyst system was 
disclosed by Kwong and co-workers in 2012 (Scheme 11A).25  Additionally, 
related cathepsin TbcatB inhibitors, consisting of –C6F5, N-Ar, and –CN 
moieties,26 were synthesized through tandem one-pot sequential C–H 
arylation/N-arylation reactions (Scheme 11B). 
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Scheme 11. Pd-Catalyzed C–H Arylation of Polyfluoroarene and 
Sequential One-Pot Two-Step C–H Arylation/Buchwald-Hartwig 

Amination 
 

The first C–P bond formation of aryl mesylates/tosylates with dialkyl 
phosphite was reported using the Pd/CM-phos catalyst system (Scheme 
12A).27 It is worthy to note that the aryl tosylates with unprotected amino 
group was compatible under a Pd loading of 1.5 mol%, achieving an 80% 
yield.  This compatibility is advantageous for further transformations, as 
demonstrated by a one-pot sequential reaction of C–P and C–N bond 
formation (Scheme 12B), giving 3-(hetero-arylamino)phenylphosphonate – a 
key functionality in potential CDK9/CycT1 inhibitors.28 
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Scheme 13. Pd-Catalyzed Phosphorylation of Aryl Tosylates/Mesylates 
and Sequential One-Pot Two-Step Phosphorylation/Buchwald-Hartwig 

Amination 
 
 

New Pd/CM-phos-type Ligands Catalyst Systems for Suzuki-Miyaura 
Cross-coupling of Aryl Mesylates/Tosylates 

 
In 2011, a more electron-rich phosphine ligand with CM-phos scaffold 

was designed by introducing a methoxy group at the para-position to the –
PCy2 moiety (i.e., MeO-CM-phos, Scheme 13A) to facilitate the oxidative 
addition process in the cross-coupling reaction.29  The Pd/MeO-CM-phos 
was first employed in the borylation of aryl mesylates and tosylates to afford 
a wide range of aryl pinacol boronate products.  Subsequently, one-pot two-
step experiments were carried out in the sequence of borylation–Suzuki 
coupling to give the unsymmetrical biaryl products (Scheme 13B). 
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Scheme 13. Pd-Catalyzed Borylation of Aryl Tosylates/Mesylates and 

One-Pot Two-Step of Borylation/Suzuki Coupling 
 
 

New Pd/CM-phos-type Ligands Catalyst Systems for Buchwald-Hartwig 
Amination of Aryl Mesylates/Tosylates 

 
In 2018, the electron-rich MeO-CM-phos was further utilized in Pd-

catalyzed N-arylation of sulfoximines with aryl tosylates/mesylates (Scheme 
14).30  Using the original Pd/CM-phos catalyst system, the desired N-
arylated sulfoximine was obtained in 89% yield.  By introducing an electron-
donating methoxy group at the para-position to the –PCy2 moiety in CM-phos 
scaffold, the product yield improved to 94%.  In particular, alkenyl tosylates 
and dialkylsulfoximines were also found to be effective coupling partners 
under this catalyst system. 
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Scheme 14 Pd-Catalyzed N-arylation of Sulfoximines with Aryl 

Sulfonates 
 

Recently, a more electron enriched version of MeO-CM-phos was 
prepared by attaching one more methoxy group to the phenyl ring on the 
ligand skeleton ((MeO)2-CM-phos, Scheme 15).31 This catalyst system was 
applicable in Pd-catalyzed selective amination of aryl tosylates with 
arylhydrazines.  ((MeO)2-CM-phos showed a better catalytic efficacy 
compared to CM-phos and MeO-CM-phos which may enhance the oxidative 
addition by the electron richness. 

 

 
Scheme 15. Pd-Catalyzed Mono-N-arylation of Arylhydrazines with Aryl 

Tosylates 
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Summary 
 

The Suzuki-Miyaura cross-coupling and Buchwald-Hartwig amination 
provide simple and efficient synthetic pathways for constructing carbon–
carbon and carbon–nitrogen bonds.  The utilization of CM-phos as the 
supporting ligand allowed the Pd-catalyzed Suzuki-Miyaura cross-coupling 
reaction and Buchwald-Hartwig amination of aryl/alkenyl tosylates and 
mesylates for the first time, further expanding the substrate scope of the 
electrophilic coupling partners beyond conventional aryl halides.  A wide 
range of substrates were found applicable in both Suzuki-Miyaura cross-
coupling processes and amination reactions at low catalyst loadings, 
demonstrating the versatility of the catalyst system.  In addition, the Pd/CM-
phos catalyst system was also successfully applied for the synthesis of 
pharmaceutically relevant intermediates and materials, underscoring its 
practicability and potential for broader application in organic synthesis.  
Indeed, the highly tunable CM-phos ligand skeleton allows further fine-
tuning through electronic and steric properties, which is potentially useful in 
addressing more challenging coupling processes. 
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