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Ketones are important components of biologically relevant scaffolds and 

versatile synthetic intermediates.2 Approaches to synthesize ketones have 
relied heavily on organometallic reagents, such as the Weinreb ketone 
synthesis,3 nucleophilic addition to acid chlorides4 or aldehydes5 (a 
subsequent oxidation step is required for aldehydes), or cross-coupling to 
activated acyl coupling partners.6, 7 In the past decade, the synthesis of 
ketones through cross-electrophile coupling (XEC) has matured, achieving 
broader functional group tolerance with more commercially available 
substrate pools. This Addendum discusses recent advancements in XEC 
approaches to prepare ketones, highlighting new strategies for acyl 
electrophile activation, practical improvements, and improved mechanistic 
understanding of these systems. We also note advances in this area have been 
comprehensively reviewed up to May 2023.8 
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Ketones from Acyl–X + C(sp3)–X 
 

As is the case with the broader field of XEC, nickel is by far the most 
commonly used metal catalyst used in this class of reaction. At the time of 
our initial Org. Synth. report in 2016 on the synthesis of ketones from 
carboxylic acid derivatives through XEC,9 coupling partners in this area were 
generally limited to acid chlorides with alkyl halides (6 out of 10 reports).10-15 
The instability of acid chlorides is a limitation to achieving broad functional 
group tolerance and we found early success in switching to the more stable 
2-pyridyl thioester,11 inspired by pioneering work from Mukaiyama and co-
workers.16 Concurrently, Hegui Gong and co-workers had showed that 
carboxylic acid anhydrides could also be converted into the ketone through 
XEC with alkyl halides.17-19 This approach brought an added benefit that the 
carboxylic acid could be coupled through an in situ activation to the mixed 
anhydride. The only example of enantioselective XEC with acyl electrophiles 
at the time was by Reisman and co-workers, which coupled acid chlorides 
with secondary benzyl chlorides using a chiral BOX ligand.13  
 
Coupling Partners and Activation Strategies 

In the past decade, several other approaches to activate carboxylic acids 
as acyl electrophiles have been demonstrated in XEC (Figure 1A). Activated 
esters and thioesters have improved stability relative to acid chlorides, but 
can readily undergo oxidative addition with nickel. Acid fluorides are also 
stable alternatives to acid chlorides that can be chromatographed and 
isolated. N-Acylimides are part of a class of destabilized amides20 that have 
been applied to transition-metal catalyzed cross-coupling, and are beginning 
to see use in XEC. The emergence of new acyl electrophiles in XEC can often 
be traced back to acid activation strategies that were originally developed for 
peptide coupling.21-23 Thus, the most useful acyl electrophiles are those that 
(1) are isolable and bench stable compounds, (2) can readily undergo 
oxidative addition with nickel catalysts to form an acylnickel(II) complex, 
and (3) generate byproducts that do not interfere with the XEC step. There 
are also less common activation strategies that generate an acyl radical in the 
mechanism (via the N-acylimidazole or N-acylphosphonium). These 
approaches are distinct from the more common radical decarboxylation in 
XEC (such as from N-hydroxyphthalimide esters),24 which generate an alkyl 
radical under reducing conditions, rather than an acyl radical. 

Concurrently, developments in alkyl electrophile activation have 
enabled access to the broadest substrate pools in XEC (Figure 1B).25 Alkyl 
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halides are orders of magnitude more abundant than organometallic reagents 
and are still the most used alkyl electrophile used to make ketones. Alcohols 
are most commonly employed as the sulfonate ester, together with a halide 
salt additive to convert the unreactive sulfonate into the more reactive alkyl 
halide. Additionally, carboxylic acids (as the N-hydroxyphthalimide ester) 
and alkylamines (as the N-alkylpyridinium salt) can be coupled with acyl 
electrophiles. Less common types of alkyl coupling partners have also been 
reported for ketone synthesis such as oxime esters,26 trimethylammonium 
salts,27 and alkyl chlorides.28 
 

 
Figure 1. Classes of coupling partners in the XEC of acyl electrophiles 

with alkyl electrophiles and their frequency of use as of July 2025 
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 There have been increased efforts to generate acyl electrophiles in situ 
from the acid to reduce step count and increase synthetic utility (Figure 2). 
Key considerations for these strategies are (1) clean and complete conversion 
to the activated electrophile in a reasonable reaction time, (2) solvent 
compatibility for both the activation step and the XEC step in order to avoid 
a solvent swap, and (3) the XEC step must be able to tolerate the byproducts 
generated from the activation step. Hegui Gong’s pioneering reports on acid 
anhydride couplings largely remains the most common method for in situ 
activation of carboxylic acids in XEC.17-19 Typical conditions use an excess of 
di-tert-butyl dicarbonate (Boc anhydride). Acid fluorides can be generated in 
situ from tetramethylfluoroformamidinium hexafluorophosphate (TFFH) 
and Proton Sponge as base.29 Recently, we showed that di-2-pyridyl 
carbonate (DPC) with catalytic 4-dimethylaminopyridine (DMAP) can be 
used to generate 2-pyridyl esters in situ for subsequent XEC.30 
 

 
Figure 2. Reagents for the in situ generation of acyl electrophiles from 

carboxylic acids 
 
Mechanism 

In addition to substrate pool analysis, a mechanistic understanding of 
XEC is key to the development of new methodology in this area. While the 
details of each mechanistic step can change based on conditions, the general 
mechanism for C(sp2)–C(sp3) XEC is shown in Figure 3.31 In this paradigm, a 
C(sp2) acyl electrophile (isolated or generated in situ) undergoes oxidative 
addition with nickel through a non-radical mechanism, generating an 
acylnickel(II) complex. Depending on reaction conditions and alkyl radical 
precursor, a variety of mechanisms can generate the C(sp3) radical, which 
reacts with the acylnickel(II) species to generate a nickel(III) intermediate. 
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This readily undergoes reductive elimination to afford the ketone and a 
nickel(I) species. Reduction of the nickel catalyst turns over the catalytic 
cycle. The most common reductants are Zn and Mn, but photochemical32-37 
and electrochemical38-40 strategies are increasingly employed.  

While a detailed discussion of XEC mechanism is outside the scope of 
this Addendum, there is an alternative route specific to acyl electrophiles 
involving a reversible decarbonylation step.17, 18, 41, 42 We43, 44 and others45-47 
have shown that a CO migration and extrusion step can precede radical 
capture and lead to an arylnickel(II) or alkylnickel(II) under certain 
conditions. Subsequent radical capture at this intermediate and reductive 
elimination generates the R–C(sp3) product. This mechanism can be favored 
when (1) temperature is elevated (often >100 °C), (2) selection of the acid 
activating group can promote the decarbonylation equilibrium, or (3) CO can 
escape the system (e.g., by an N2 flush), which prevents any reversibility. 

 

 
Figure 3. General mechanism for the C(sp2)–C(sp3) cross-electrophile 

coupling of acyl electrophiles with alkyl electrophiles. While the ketone 
route generally predominates, under certain conditions the 

decarbonylative route can become the major product-forming mechanism 
 
New Modes of Alkyl Activation Strategies Applied to Ketone Synthesis 
 A notable advancement in XEC is the development of new approaches to 
couple substrate pools outside of alkyl halides. The emergence of N-
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hydroxyphthalimide (NHP) esters and N-alkylpyridiniums has led to 
increased interest in developing improved conditions to prepare ketones. 
Indeed, 79% of new reactions for C(sp2)–C(sp3) XEC for ketone synthesis were 
reported after 2016. 
 In 2019, our group48 and Baran49 concurrently developed conditions to 
cross-couple two carboxylic acids for ketone synthesis (Figure 4). This type of 
strategy requires distinct activation modes for each carboxylic acid coupling 
partner and that they do not scramble under reaction conditions. Our report, 
in collaboration with Gellman, employed 2-pyridyl thioesters (as the acyl 
donor) and alkyl NHP esters (as the radical donor). This report also showed 
how NHP ester consumption could be tuned by the addition of zinc salts, and 
by using a mixed solvent system of THF and DMA. Baran’s report had a 
similarly broad scope using in situ generated mixed anhydrides as the acyl 
donor. Later reports have enabled this type of coupling to be driven 
photochemically with Hantzsch ester as reductant.33-37 
 

 
Figure 4. Ketones from coupling two carboxylic acids 

 
Amines are also an abundant substrate pool and most commonly 

associated with C–N amide bond formation when reacted with a carboxylic 
acid. The advancement of N-alkylpyridinium salts as radical sources has 
enabled the use of these coupling partners in C–C bond formation. These 
reagents commonly prepared by the condensation of a primary or secondary 
amine with commercially available 2,4,6-triphenylpyrillium 
tetrafluoroborate. Soon after the emergence of these coupling partners in 
cross-coupling with aryl boronic acids,50 reports of XEC began to appear 
(Figure 5). The Matsuo group showed that N-aroylsuccinmides could be 
coupled to N-alkylpyridinium salts.51 Rasappan and co-workers performed 
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this coupling with acyl chlorides or in situ generated anhydrides.52 Our 
group, in collaboration with the Watson group, showed that in situ generated 
acid fluorides could be coupled to N-alkylpyridiniums, including several 
examples of complex amine fragments derived from natural products.29 In 
the same report we also developed modified conditions for secondary N-
alkylpyridiniums, swapping the acyl electrophile to a 2-pyridyl ester and the 
ligand to Bphen. Later, Kranthikumar and co-workers reported a ketone 
synthesis from the XEC of 2-pyridyl thioesters with N-alkylpyridiniums.53 
 

 
Figure 5. Ketones from coupling a carboxylic acid with an amine 

  
Alkyl alcohols represent another important substrate pool, and at time of 

writing they have been most generally applied to ketone synthesis as the 
sulfonate ester.15, 54, 55  In these reactions, in situ halide exchange introduced 
by a salt additive or the nickel precatalyst generates low concentrations of the 
alkyl halide, which is the active coupling partner. Deoxygenative XEC is far 
less developed in ketone synthesis despite their rapid advancement in other 
areas of XEC (e.g., aryl–alkyl bond formation). This is perhaps due, in part, 
to the challenge of overcoming transesterification of the free alcohol with the 
acyl electrophile. A recent report from Fleischer and co-workers disclosed 
promising conditions to couple thiophenyl esters with benzyl alcohols 
through nickel/titanium co-catalysis, although the scope is limited to 
methoxy-substituted benzyl alcohols.56 
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Stereochemical Control 
Since the Reisman group’s pioneering work on the enantioconvergent 

XEC of acid chlorides with secondary benzyl chlorides,13 new approaches to 
make α-chiral ketones have focused on coupling other classes of activated 
alkyl electrophiles (Figure 6). The groups of Xi-Sheng Wang, Genping Huang 
& Chun Zhang, and Liang-An Chen all reported conditions to couple acid 
chlorides with α-trifluoromethyl alkyl bromides.57-59 Shaolin Zhu and co-
workers demonstrated a two-ligand system based on their previous work60 
that enabled a migratory, enantioconvergent coupling of alkyl iodides with 
carboxylic acids (via in situ anhydride generation), synthesizing chiral α-
arylated ketones via chain-walking.61 Liang-An Chen, Qiaorong Han, and co-
workers successfully coupled acid chlorides to α-bromobenzoates to 
synthesize chiral acyloin products.62 Baran and co-workers reported the 
coupling of acid chlorides with amino acid-derived NHP esters to prepare 
chiral α-amino ketones.63 Reisman, Sigman and co-workers reported the 
synthesis of α-chiral ketones through the desymmetrization of cyclic meso-
anhydrides with benzyl chlorides.46 This report also disclosed conditions for 
the decarbonylative XEC of meso-anhydrides with primary alkyl bromides 
and a wealth of mechanism-driven ligand design. In their studies of 
enantioconvergent XEC to 2-aryloxetanes via ring-opening, Kaiwu Dong and 
co-workers reported conditions that could couple to acid anhydrides.64 
Across these reports, it is worth noting the structural similarity of the BOX 
ligands for these transformations. In analogy to other types of 
enantioselective C(sp2)–C(sp3) XEC, this area has seen the broadest success 
with activated alkyl electrophiles, the majority of examples being with alkyl 
halides. Mechanistically, enantioconvergent couplings remain most 
common, as XEC with alkyl electrophiles proceeds through an alkyl radical. 

In a different class of stereochemical challenge, we reported an approach 
to prepare (E)-enones from coupling acrylic acids (as the in situ generated 2-
pyridyl ester) with alkyl bromides.30 In this case, stereochemical control 
comes from thermodynamic preferences accessed by nickel-mediated E/Z 
isomerization as the reaction progresses.  
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Figure 6. Recent advances in the enantioselective XEC of acyl 

electrophiles 
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Applications to Synthesis 
The improved functional group tolerance offered by XEC over alkyl 

nucleophiles in cross-coupling can prove beneficial in assembling complex 
fragments for the synthesis of natural products. The Kishi group has reported 
a series of XEC reactions to prepare dialkyl ketones that have been applied to 
total synthesis (Figure 7). The initial report employed an iron-catalyzed, 
copper-mediated XEC of acyl electrophiles with alkyl iodides.65 Soon after, 
their group reported a nickel-catalyzed system where a zirconium additive is 
key to activate the alkyl iodide reduction.66 Improved conditions were later 
reported that enabled a 1:1 stoichiometry of 2-pyridyl thioester to alkyl iodide 
with significantly lower catalyst loading.67 These conditions tolerate sensitive 
functionality such as C(sp2)-halides, alcohols, and phenols. Kishi applied 
these conditions to assemble late-stage fragments in syntheses of the 
halichondrin67-69 and halistatin70 classes of natural products. In a joint research 
effort between scientists at Eisai and the Kishi group, this chemistry was 
scaled to deliver over ten grams of E7130, an anticancer clinical candidate and 
a structural analogue of halichondrin B.71, 72  

Others molecules that have been completed using the Ni/Zr XEC system 
include (−)-irijimaside A by Umehara and Sasaki,73 and bryostatins 1, 7, and 
9 by Zhenlei Song and co-workers.74 Additionally, Chulbom Lee and co-
workers successfully coupled a pyridyl thioester with an NHP ester using 
modified conditions of the Ni/Zr system for the synthesis of a fragment of 
madeirolide A.75 Outside of the Ni/Zr approach, Shuanglin Qu, Qianghui 
Zhou, and co-workers reported a synthesis of (−)-berkelic acid by coupling 
an α-tertiary acyl chloride with a primary alkyl iodide.76  
 
Ketones from Acyl–X + C(sp2)–X 
 

The XEC of an acyl electrophile with other C(sp2) electrophiles has been 
slower to develop than C(sp2)–C(sp3) acyl–alkyl coupling. Cross-selectivity in 
these systems can be difficult to control as now each coupling partner reacts 
with nickel through a two-electron oxidative addition mechanism. This 
results in unselective statistical mixtures if the coupling partners react at 
similar rates or homodimerization if they aren’t inherently well-matched. 
Representative examples are shown in Figure 8. 
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Figure 7. Application of nickel/zirconium XEC to prepare halichondrins 

and analogous natural products 
 

Jianlin Han and co-workers demonstrated the feasibility C(sp2)–C(sp2) 
acyl coupling through the XEC of N-acylglutarimides with aryl iodides to 
prepare diaryl ketones.77 Walsh, Jianyou Mao, and co-workers reported the 
desymmetrizing XEC of cyclic meso-anhydrides with aryl triflates.78 Xing-
Zhong Shu and co-workers developed a synthesis of enones through the XEC 
of aroyl fluorides with cyclic vinyl triflates.79 An alternative strategy to 
achieve cross-selectivity is the selection of conditions that proceed through 
an acyl radical to differentiate its reactivity from the other C(sp2) coupling 
partner. In their study on the XEC of N-acylimidazoles, which generates an 
acyl radical for aroyl substrates, Chao Li and co-workers showed several 
examples coupling to aryl bromides.80 Jia Xie ad co-workers reported a Ni/Ir 
photocatalytic system where triphenylphosphine can be used to generate an 
acyl radical via an acylphosphonium.81 This has translated to successful 
couplings of benzoic acid derivatives with aryl bromides (to prepare diaryl 
ketones)82 and vinyl triflates (to prepare enones).83 

Nickel/Zirconium XEC of 2-Pyridyl Thioesters with Alkyl Iodides (Kishi)
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Figure 8. Representative examples of ketone synthesis from the XEC of 

acyl electrophiles with C(sp2) electrophiles 
 

Despite these advancements, XEC approaches to prepare diaryl ketones 
remains underdeveloped, relying more on nucleophiles (e.g., Suzuki 
coupling of aroyl electrophiles with aryl boronic acids) to achieve cross-
selectivity. Strategies used to distinguish C(sp2) electrophiles in biaryl XEC 
such as multimetallic couplings have yet to be reported with an acyl 
electrophile. The scope of acyl–X + C(sp2)–X couplings is also notably limited 
compared to other classes of XEC, with no examples of aromatic nitrogen 
heterocycles reported to date. 
 
Conclusions and Outlook 

 
The synthesis of ketones by XEC has rapidly grown since the time of our 

Org. Synth. report in 2016. The development of new strategies to activate 
carboxylic acids as electrophiles has been a significant contributor to this 
interest. 2-Pyridyl (thio)esters are especially useful as they have increased 
stability relative to acid chlorides but still readily undergo oxidative addition 
with nickel. Mixed anhydrides remain the most common approach for in situ 
activation. The XEC of acyl electrophiles with C(sp3) electrophiles has seen 
the largest number of reports, in analogy to the rapid growth of C(sp2)–C(sp3) 
aryl–alkyl XEC. However, as is the case with the entire field, achieving robust 
cross-selectivity can be challenging, as is evident in the coupling acyl 
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electrophiles with other C(sp2) electrophiles. The XEC with acyl electrophiles 
relies on a relatively small set of nitrogen-based ligands (bipyridines, 
terpyridines, and phenanthrolines), and the development of new ligands 
could promote new reactivity. Certain classes of coupling partners remain 
challenging for XEC with acyl electrophiles, such acrylic acid-derived C(sp2) 
electrophiles and deoxygenative couplings of C(sp3) alkyl alcohols. 
Enantioselective syntheses have also developed to include other classes of 
activated electrophiles through enantioconvergent couplings, and there will 
undoubtedly continue to be advancements in this rapidly growing area. 

Recently, there has been increased interest in controlling the equilibrium 
arising from loss of CO from acylnickel(II) intermediates to promote the 
decarbonylative coupling and synthesize aryl–alkyl and alkyl–alkyl bonds 
from carboxylic acids. This provides complementary reactivity and products 
to the corresponding acyl coupling. As the field’s understanding of XEC 
mechanism, ligand design, and substrate pool activation modes continue to 
improve, we expect the XEC of acyl electrophiles will continue to be one of 
the most widely used approaches to synthesize ketones. 
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