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Ketones are important components of biologically relevant scaffolds and
versatile synthetic intermediates.”> Approaches to synthesize ketones have
relied heavily on organometallic reagents, such as the Weinreb ketone
synthesis,® nucleophilic addition to acid chlorides* or aldehydes® (a
subsequent oxidation step is required for aldehydes), or cross-coupling to
activated acyl coupling partners.® 7 In the past decade, the synthesis of
ketones through cross-electrophile coupling (XEC) has matured, achieving
broader functional group tolerance with more commercially available
substrate pools. This Addendum discusses recent advancements in XEC
approaches to prepare ketones, highlighting new strategies for acyl
electrophile activation, practical improvements, and improved mechanistic
understanding of these systems. We also note advances in this area have been
comprehensively reviewed up to May 2023.°
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Ketones from Acyl-X + C(sp®)-X

As is the case with the broader field of XEC, nickel is by far the most
commonly used metal catalyst used in this class of reaction. At the time of
our initial Org. Synth. report in 2016 on the synthesis of ketones from
carboxylic acid derivatives through XEC,’ coupling partners in this area were
generally limited to acid chlorides with alkyl halides (6 out of 10 reports).'**
The instability of acid chlorides is a limitation to achieving broad functional
group tolerance and we found early success in switching to the more stable
2-pyridyl thioester,'" inspired by pioneering work from Mukaiyama and co-
workers. Concurrently, Hegui Gong and co-workers had showed that
carboxylic acid anhydrides could also be converted into the ketone through
XEC with alkyl halides.”* This approach brought an added benefit that the
carboxylic acid could be coupled through an in situ activation to the mixed
anhydride. The only example of enantioselective XEC with acyl electrophiles
at the time was by Reisman and co-workers, which coupled acid chlorides
with secondary benzyl chlorides using a chiral BOX ligand."

Coupling Partners and Activation Strategies

In the past decade, several other approaches to activate carboxylic acids
as acyl electrophiles have been demonstrated in XEC (Figure 1A). Activated
esters and thioesters have improved stability relative to acid chlorides, but
can readily undergo oxidative addition with nickel. Acid fluorides are also
stable alternatives to acid chlorides that can be chromatographed and
isolated. N-Acylimides are part of a class of destabilized amides® that have
been applied to transition-metal catalyzed cross-coupling, and are beginning
to see use in XEC. The emergence of new acyl electrophiles in XEC can often
be traced back to acid activation strategies that were originally developed for
peptide coupling.”® Thus, the most useful acyl electrophiles are those that
(1) are isolable and bench stable compounds, (2) can readily undergo
oxidative addition with nickel catalysts to form an acylnickel(II) complex,
and (3) generate byproducts that do not interfere with the XEC step. There
are also less common activation strategies that generate an acyl radical in the
mechanism (via the N-acylimidazole or N-acylphosphonium). These
approaches are distinct from the more common radical decarboxylation in
XEC (such as from N-hydroxyphthalimide esters),* which generate an alkyl
radical under reducing conditions, rather than an acyl radical.

Concurrently, developments in alkyl electrophile activation have
enabled access to the broadest substrate pools in XEC (Figure 1B).* Alkyl
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halides are orders of magnitude more abundant than organometallic reagents
and are still the most used alkyl electrophile used to make ketones. Alcohols
are most commonly employed as the sulfonate ester, together with a halide
salt additive to convert the unreactive sulfonate into the more reactive alkyl
halide. Additionally, carboxylic acids (as the N-hydroxyphthalimide ester)
and alkylamines (as the N-alkylpyridinium salt) can be coupled with acyl
electrophiles. Less common types of alkyl coupling partners have also been
reported for ketone synthesis such as oxime esters,® trimethylammonium
salts,” and alkyl chlorides.”

A. C(sp?) Acyl Electrophiles (R = Alkyl, Aryl, or Vinyl)
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Figure 1. Classes of coupling partners in the XEC of acyl electrophiles
with alkyl electrophiles and their frequency of use as of July 2025
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There have been increased efforts to generate acyl electrophiles in situ
from the acid to reduce step count and increase synthetic utility (Figure 2).
Key considerations for these strategies are (1) clean and complete conversion
to the activated electrophile in a reasonable reaction time, (2) solvent
compatibility for both the activation step and the XEC step in order to avoid
a solvent swap, and (3) the XEC step must be able to tolerate the byproducts
generated from the activation step. Hegui Gong’s pioneering reports on acid
anhydride couplings largely remains the most common method for in situ
activation of carboxylic acids in XEC."”"* Typical conditions use an excess of
di-tert-butyl dicarbonate (Boc anhydride). Acid fluorides can be generated in
situ from tetramethylfluoroformamidinium hexafluorophosphate (TFFH)
and Proton Sponge as base” Recently, we showed that di-2-pyridyl
carbonate (DPC) with catalytic 4-dimethylaminopyridine (DMAP) can be
used to generate 2-pyridyl esters in situ for subsequent XEC.*

In situ activation enables XEC to the carboxylic acid without an intermediate isolation

2

0 R“-X
Q lL [Ni], ligand, reductant ?L
[ — . >
R" "OH  activation step R" Y XEC step R" "R?

not isolated

Reagents for the in situ generation of acyl electrophiles

‘%Lj\oj\ﬁé *;\o)< & orMe 2&{© Me,N NMe Q J\ /O

Boc,0 DMDC Bz,0 TFFH
mixed anhydrides acid fluorides 2-pyridyl esters
Figure 2. Reagents for the in situ generation of acyl electrophiles from
carboxylic acids

Mechanism

In addition to substrate pool analysis, a mechanistic understanding of
XEC is key to the development of new methodology in this area. While the
details of each mechanistic step can change based on conditions, the general
mechanism for C(sp?)-C(sp?) XEC is shown in Figure 3.*! In this paradigm, a
C(sp?) acyl electrophile (isolated or generated in situ) undergoes oxidative
addition with nickel through a non-radical mechanism, generating an
acylnickel(II) complex. Depending on reaction conditions and alkyl radical
precursor, a variety of mechanisms can generate the C(sp®) radical, which
reacts with the acylnickel(II) species to generate a nickel(IIl) intermediate.
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This readily undergoes reductive elimination to afford the ketone and a
nickel(I) species. Reduction of the nickel catalyst turns over the catalytic
cycle. The most common reductants are Zn and Mn, but photochemical®*¥”
and electrochemical®**’ strategies are increasingly employed.

While a detailed discussion of XEC mechanism is outside the scope of
this Addendum, there is an alternative route specific to acyl electrophiles
involving a reversible decarbonylation step.'” '® * > We*» * and others**
have shown that a CO migration and extrusion step can precede radical
capture and lead to an arylnickel(Il) or alkylnickel(Il) under certain
conditions. Subsequent radical capture at this intermediate and reductive
elimination generates the R-C(sp®) product. This mechanism can be favored
when (1) temperature is elevated (often >100 °C), (2) selection of the acid
activating group can promote the decarbonylation equilibrium, or (3) CO can
escape the system (e.g., by an N, flush), which prevents any reversibility.

R—C(sp?)  C(sP")

L, N‘Im/x
R C sp3
[reductant] (%)
o 0
[reductant] )L LnNi”\x
CO
R
Ketone-Forming _CO
—X Route Ln N'” X
C(sp
*C(s
C(Sp / ( p
L, NI”I/ [Ni] or
R co catalyst
o C(sp?)—

Figure 3. General mechanism for the C(sp?)-C(sp?) cross-electrophile
coupling of acyl electrophiles with alkyl electrophiles. While the ketone
route generally predominates, under certain conditions the
decarbonylative route can become the major product-forming mechanism

New Modes of Alkyl Activation Strategies Applied to Ketone Synthesis
A notable advancement in XEC is the development of new approaches to
couple substrate pools outside of alkyl halides. The emergence of N-
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hydroxyphthalimide (NHP) esters and N-alkylpyridiniums has led to
increased interest in developing improved conditions to prepare ketones.
Indeed, 79% of new reactions for C(sp*)-C(sp’®) XEC for ketone synthesis were
reported after 2016.

In 2019, our group* and Baran® concurrently developed conditions to
cross-couple two carboxylic acids for ketone synthesis (Figure 4). This type of
strategy requires distinct activation modes for each carboxylic acid coupling
partner and that they do not scramble under reaction conditions. Our report,
in collaboration with Gellman, employed 2-pyridyl thioesters (as the acyl
donor) and alkyl NHP esters (as the radical donor). This report also showed
how NHP ester consumption could be tuned by the addition of zinc salts, and
by using a mixed solvent system of THF and DMA. Baran’s report had a
similarly broad scope using in situ generated mixed anhydrides as the acyl
donor. Later reports have enabled this type of coupling to be driven
photochemically with Hantzsch ester as reductant.**

Weix 2019 (40 examples; 62 + 12% avg. yield)

[ele) ‘I‘\l‘iB\;%(cé@e) (2 mol%) (0]
o & R21< #Me20Chpy (2 mol%) 1JL ,
QPN - O-N Zn (2 equiv) ROR
R ™8™ °N ZnCl, (0.2 equiv) R = 1°, 2°, 3° alkyl: aryl
1 equiv O fequiv THF/IDMA (1:1), 1t R? =1°, 2° 3° alkyl

Baran 2019 (57 examples; 58 + 16% avg. yield)

o o Ni(Bphen)Cl,»2DMF (20 mol%) o)
o Rz/< (PhC0),0 (2.2 equiv) 11L ,
AK + O-N Zn (2 equiv), MgCl, (1.5 equiv) ROR
R™ "OH LiBr (1 equiv) R' = 1°, 2°, 3° alkyl: aryl
2 equiv o] MeCN/THF (2:3), rt R? =1°, 2°, 3° alkyl

Figure 4. Ketones from coupling two carboxylic acids

Amines are also an abundant substrate pool and most commonly
associated with C-N amide bond formation when reacted with a carboxylic
acid. The advancement of N-alkylpyridinium salts as radical sources has
enabled the use of these coupling partners in C-C bond formation. These
reagents commonly prepared by the condensation of a primary or secondary
amine with commercially available 2,4,6-triphenylpyrillium
tetrafluoroborate. Soon after the emergence of these coupling partners in
cross-coupling with aryl boronic acids,” reports of XEC began to appear
(Figure 5). The Matsuo group showed that N-aroylsuccinmides could be
coupled to N-alkylpyridinium salts.”® Rasappan and co-workers performed
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this coupling with acyl chlorides or in situ generated anhydrides.” Our
group, in collaboration with the Watson group, showed that in situ generated
acid fluorides could be coupled to N-alkylpyridiniums, including several
examples of complex amine fragments derived from natural products.”” In
the same report we also developed modified conditions for secondary N-
alkylpyridiniums, swapping the acyl electrophile to a 2-pyridyl ester and the
ligand to Bphen. Later, Kranthikumar and co-workers reported a ketone
synthesis from the XEC of 2-pyridyl thioesters with N-alkylpyridiniums.*

Matsuo 2020 (28 examples; 62 + 9% avg. yield)
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Ph
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Weix and Watson 2020 (35 examples; 60 + 16% avg. yield)

Ph
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Figure 5. Ketones from coupling a carboxylic acid with an amine

Alkyl alcohols represent another important substrate pool, and at time of
writing they have been most generally applied to ketone synthesis as the
sulfonate ester.”>> % In these reactions, in situ halide exchange introduced
by a salt additive or the nickel precatalyst generates low concentrations of the
alkyl halide, which is the active coupling partner. Deoxygenative XEC is far
less developed in ketone synthesis despite their rapid advancement in other
areas of XEC (e.g., aryl-alkyl bond formation). This is perhaps due, in part,
to the challenge of overcoming transesterification of the free alcohol with the
acyl electrophile. A recent report from Fleischer and co-workers disclosed
promising conditions to couple thiophenyl esters with benzyl alcohols
through nickel/titanium co-catalysis, although the scope is limited to
methoxy-substituted benzyl alcohols.*
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Stereochemical Control

Since the Reisman group’s pioneering work on the enantioconvergent
XEC of acid chlorides with secondary benzyl chlorides,”® new approaches to
make a-chiral ketones have focused on coupling other classes of activated
alkyl electrophiles (Figure 6). The groups of Xi-Sheng Wang, Genping Huang
& Chun Zhang, and Liang-An Chen all reported conditions to couple acid
chlorides with a-trifluoromethyl alkyl bromides.”>* Shaolin Zhu and co-
workers demonstrated a two-ligand system based on their previous work®
that enabled a migratory, enantioconvergent coupling of alkyl iodides with
carboxylic acids (via in situ anhydride generation), synthesizing chiral a-
arylated ketones via chain-walking.® Liang-An Chen, Qiaorong Han, and co-
workers successfully coupled acid chlorides to a-bromobenzoates to
synthesize chiral acyloin products.®> Baran and co-workers reported the
coupling of acid chlorides with amino acid-derived NHP esters to prepare
chiral a-amino ketones.®® Reisman, Sigman and co-workers reported the
synthesis of a-chiral ketones through the desymmetrization of cyclic meso-
anhydrides with benzyl chlorides.* This report also disclosed conditions for
the decarbonylative XEC of meso-anhydrides with primary alkyl bromides
and a wealth of mechanism-driven ligand design. In their studies of
enantioconvergent XEC to 2-aryloxetanes via ring-opening, Kaiwu Dong and
co-workers reported conditions that could couple to acid anhydrides.*
Across these reports, it is worth noting the structural similarity of the BOX
ligands for these transformations. In analogy to other types of
enantioselective C(sp?)-C(sp’) XEC, this area has seen the broadest success
with activated alkyl electrophiles, the majority of examples being with alkyl
halides. Mechanistically, enantioconvergent couplings remain most
common, as XEC with alkyl electrophiles proceeds through an alkyl radical.

In a different class of stereochemical challenge, we reported an approach
to prepare (E)-enones from coupling acrylic acids (as the in situ generated 2-
pyridyl ester) with alkyl bromides.® In this case, stereochemical control
comes from thermodynamic preferences accessed by nickel-mediated E/Z
isomerization as the reaction progresses.
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Enantioconvergent Synthesis of a-Chiral Ketones
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Figure 6. Recent advances in the enantioselective XEC of acyl

electrophiles
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Applications to Synthesis

The improved functional group tolerance offered by XEC over alkyl
nucleophiles in cross-coupling can prove beneficial in assembling complex
fragments for the synthesis of natural products. The Kishi group has reported
a series of XEC reactions to prepare dialkyl ketones that have been applied to
total synthesis (Figure 7). The initial report employed an iron-catalyzed,
copper-mediated XEC of acyl electrophiles with alkyl iodides.®® Soon after,
their group reported a nickel-catalyzed system where a zirconium additive is
key to activate the alkyl iodide reduction.® Improved conditions were later
reported that enabled a 1:1 stoichiometry of 2-pyridyl thioester to alkyl iodide
with significantly lower catalyst loading.” These conditions tolerate sensitive
functionality such as C(sp?)-halides, alcohols, and phenols. Kishi applied
these conditions to assemble late-stage fragments in syntheses of the
halichondrin®* and halistatin” classes of natural products. In a joint research
effort between scientists at Eisai and the Kishi group, this chemistry was
scaled to deliver over ten grams of E7130, an anticancer clinical candidate and
a structural analogue of halichondrin B.”» 7>

Others molecules that have been completed using the Ni/Zr XEC system
include (-)-irijimaside A by Umehara and Sasaki,” and bryostatins 1, 7, and
9 by Zhenlei Song and co-workers.”* Additionally, Chulbom Lee and co-
workers successfully coupled a pyridyl thioester with an NHP ester using
modified conditions of the Ni/Zr system for the synthesis of a fragment of
madeirolide A.”> Outside of the Ni/Zr approach, Shuanglin Qu, Qianghui
Zhou, and co-workers reported a synthesis of (-)-berkelic acid by coupling
an a-tertiary acyl chloride with a primary alkyl iodide.”

Ketones from Acyl-X + C(sp?)-X

The XEC of an acyl electrophile with other C(sp?) electrophiles has been
slower to develop than C(sp?)-C(sp°) acyl-alkyl coupling. Cross-selectivity in
these systems can be difficult to control as now each coupling partner reacts
with nickel through a two-electron oxidative addition mechanism. This
results in unselective statistical mixtures if the coupling partners react at
similar rates or homodimerization if they aren’t inherently well-matched.
Representative examples are shown in Figure 8.
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Nickel/Zirconium XEC of 2-Pyridyl Thioesters with Alkyl lodides (Kishi)
0 = [Ni](L) (X mol%]) 0

1 — o
O o e smy ceaChOequy BT
'R STON 1-1.2 equiv  Zn, solvent, rt 'R™R? v
[ e
~
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LN //
t-Bu cl- Y
Cl

2017: NiCly(dtbbpy) (10 mol%) 2019: Nil(tmtpy) (1 mol%) + NiCl,[Py-(Me)imid] (1 mol%)
40 examples; 84 + 16% avg. yield 13 examples; 87 + 9% avg. yield

LOTES
tBu o4 Yo ﬁ o
t-Bu—SiiD o o
o o
o 0 L.

Key intermediate assembled by XEC in
the preparation of halichondrins

Figure 7. Application of nickel/zirconium XEC to prepare halichondrins
and analogous natural products

Jianlin Han and co-workers demonstrated the feasibility C(sp?)-C(sp?)
acyl coupling through the XEC of N-acylglutarimides with aryl iodides to
prepare diaryl ketones.”” Walsh, Jianyou Mao, and co-workers reported the
desymmetrizing XEC of cyclic meso-anhydrides with aryl triflates.”® Xing-
Zhong Shu and co-workers developed a synthesis of enones through the XEC
of aroyl fluorides with cyclic vinyl triflates.”” An alternative strategy to
achieve cross-selectivity is the selection of conditions that proceed through
an acyl radical to differentiate its reactivity from the other C(sp*) coupling
partner. In their study on the XEC of N-acylimidazoles, which generates an
acyl radical for aroyl substrates, Chao Li and co-workers showed several
examples coupling to aryl bromides.* Jia Xie ad co-workers reported a Ni/Ir
photocatalytic system where triphenylphosphine can be used to generate an
acyl radical via an acylphosphonium.®" This has translated to successful
couplings of benzoic acid derivatives with aryl bromides (to prepare diaryl
ketones)* and vinyl triflates (to prepare enones).*®
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Jianlin Han 2017 (25 examples; 74 + 10% avg. yield)
o o Nil (10 mol%) o
| tpy (10 mol%)
X + ey i
R N \fR Zn (2.0 equiv) R1T N /;RZ
— o KF (1.0 equiv) L )

1.5 equiv DMF, 80 °C
Walsh and Jianyou Mao 2018 (28 examples; 82 + 6% avg. yield)

g1 02 Ni(cod), (20 mol%)

o N e bey (B0mol%) _
- Zn (2.0 equiv), Znl, (1.0 equiv)

; TMSCI (0.2 equiv)
1
equlv DMF, 80 °C

1 eqmv

Xlng-Zhong Shu 2019 (35 examples; 70 + 16% avg. yield)
Tio Ni(dppe)Cl, (10 mol%) o
0,
R“’\ E . R2 ttbpy (12 mol%) LN N,
L Mn (3.5 equiv) R ‘ TR
. DMA/PhMe (3:2), 70 °C =
1.5 equiv

Figure 8. Representative examples of ketone synthesis from the XEC of
acyl electrophiles with C(sp?) electrophiles

Despite these advancements, XEC approaches to prepare diaryl ketones
remains underdeveloped, relying more on nucleophiles (e.g., Suzuki
coupling of aroyl electrophiles with aryl boronic acids) to achieve cross-
selectivity. Strategies used to distinguish C(sp®) electrophiles in biaryl XEC
such as multimetallic couplings have yet to be reported with an acyl
electrophile. The scope of acyl-X + C(sp?)-X couplings is also notably limited
compared to other classes of XEC, with no examples of aromatic nitrogen
heterocycles reported to date.

Conclusions and Outlook

The synthesis of ketones by XEC has rapidly grown since the time of our
Org. Synth. report in 2016. The development of new strategies to activate
carboxylic acids as electrophiles has been a significant contributor to this
interest. 2-Pyridyl (thio)esters are especially useful as they have increased
stability relative to acid chlorides but still readily undergo oxidative addition
with nickel. Mixed anhydrides remain the most common approach for in situ
activation. The XEC of acyl electrophiles with C(sp?) electrophiles has seen
the largest number of reports, in analogy to the rapid growth of C(sp?)-C(sp?)
aryl-alkyl XEC. However, as is the case with the entire field, achieving robust
cross-selectivity can be challenging, as is evident in the coupling acyl
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electrophiles with other C(sp?) electrophiles. The XEC with acyl electrophiles
relies on a relatively small set of nitrogen-based ligands (bipyridines,
terpyridines, and phenanthrolines), and the development of new ligands
could promote new reactivity. Certain classes of coupling partners remain
challenging for XEC with acyl electrophiles, such acrylic acid-derived C(sp?)
electrophiles and deoxygenative couplings of C(sp’) alkyl alcohols.
Enantioselective syntheses have also developed to include other classes of
activated electrophiles through enantioconvergent couplings, and there will
undoubtedly continue to be advancements in this rapidly growing area.

Recently, there has been increased interest in controlling the equilibrium
arising from loss of CO from acylnickel(Il) intermediates to promote the
decarbonylative coupling and synthesize aryl-alkyl and alkyl-alkyl bonds
from carboxylic acids. This provides complementary reactivity and products
to the corresponding acyl coupling. As the field’s understanding of XEC
mechanism, ligand design, and substrate pool activation modes continue to
improve, we expect the XEC of acyl electrophiles will continue to be one of
the most widely used approaches to synthesize ketones.
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