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Diphenylprolinol silyl ether 3 (Figure 1) is a versatile organocatalyst.2 In 
2005, our group reported the asymmetric Michael reaction of aldehydes and 
nitroalkenes catalyzed by this catalyst 3.3 In 2011, we found that the reaction 
is greatly accelerated by p-nitrophenol.4 The procedure based on this finding 
is described in our article of 2017, published in Organic Syntheses.5  

 

 
Figure 1. Representative organocatalysts 
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phenyl group 4.6 In both Michael and sulfenylation reactions, an enamine, 
generated from the aldehyde and the catalyst, is a key intermediate (eq. 1). 
As the enamine is a reactive nucleophile, it reacts with electrophiles to afford 
a-functionalized aldehydes with excellent enantioselectivity. This type of 
catalyst also reacts with an a,b-unsaturated aldehyde to generate an iminium 
ion (eq. 2). The iminium ion is a reactive electrophile; it reacts with 
nucleophiles to afford b-functionalized aldehydes with excellent 
enantioselectivity.  
 

 
 
Here, there are two major catalysts: diphenylprolinol silyl ether 3, and 

diarylprolinol silyl ether with trifluoromethyl substituents 4 (Figure 1). The 
difference between these two catalysts is as follows.7 As a trifluoromethyl 
substituent is a good electron-withdrawing group, the electron density on the 
nitrogen in catalyst 4 is lower than that on the nitrogen in catalyst 3. The latter 
is a nucleophilic catalyst and the HOMO level of the enamine generated from 
catalyst 3 is higher than that generated from catalyst 4. Thus, the reactivity of 
the enamine generated from 3 is higher than that of the enamine generated 
from 4. Regarding the iminium ion, on the other hand, the LUMO of the 
iminium ion generated from 4 is lower than that generated from 3, and the 
former iminium ion is more electrophilic and reactive.  

The silyl group is essential for the high reactivity. In the reaction of 
diphenylprolinol, the reaction is slow. This is because diphenylprolinol reacts 
with an aldehyde to generate a stable N,O-acetal with low concentration of 
the reactive enamine (eq. 3). However, we found that diarylprolinol is 
effective for the cross-aldol reaction of two different aldehydes, in which the 
hydroxy group of the catalyst is essential for the activation of the electrophilic 
aldehydes (eq. 4).8 

 

H

O

R1
N
H

Ar
Ar

OTMS
+

N

Ar
Ar

OTMS

R1

H

O

N
H

Ar
Ar

OTMS
+

R2

N

Ar
Ar

OTMS

R2

(1)

(2)

Ar = C6H5- or 3,5-(CF3)2C6H3-



 

Org. Synth. 2022, 99, 68-78   DOI: 10.15227/orgsyn.99.0068 70 

 
 
In both reactions involving the enamine and the iminium ion as an 

intermediate, excellent enantioselectivity is realized. This could be because of 
steric effects in the transition state (Figure 2). One of the enantiofaces of the 
enamine and the iminium ion is effectively shielded by the bulky 
diarylmethyl silyl ether moiety, facilitating approach of an electrophile or a 
nucleophile from the opposite side.  

 
 

 
 

Figure 2. Effect of the silyl moiety 
 
Regarding the silyl substituent, not only can a trimethylsilyl group be 

utilized, but other silyl groups, such as triethylsilyl, tert-butyldimethylsilyl, 
triphenylsilyl, and triisopropylsilyl can be used, as well. In general, as the 
size of the silyl group increases, the generation of the enamine and the 
iminium ion from the corresponding aldehyde and a,b-unsaturated 
aldehyde, in the presence of catalyst, becomes slower because of steric 
hindrance, while the enantioselectivity generally increases.9  
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dihydro-oxazine N-oxide 6, which are stable and can be isolated. Compounds 
5 and 6 can be transformed into the Michael product by reaction with water, 
accelerated by acid, which is why a catalytic amount of acid accelerates the 
reaction.  

 
 

Scheme 1. Reaction mechanism of the Michael reaction of 
propanal and nitrostyrene 

 
Regarding the Michael reaction of aldehydes and nitroalkenes, an 

aldehyde lacking substitution at the a-position, such as acetaldehyde, can be 
successfully employed as a Michael donor, affording the product with 
excellent enantioselectivity (eq. 5).11  
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Moreover, not only nitroalkenes but also b-substituted a-nitroacrylates,12 
dicyanoalkenes,13 and a-cyano a,b-unsaturated esters,14 and vinyl sulfones15 
can be employed as useful Michael acceptors, using an aldehyde as a Michael 
donor (eq. 6). In all cases, excellent enantioselectivity is realized.  

 

 
 
There are several applications of the asymmetric Michael reaction of 

aldehydes and nitroalkenes in the total synthesis of biologically-active 
molecules. Chemists at Novartis have reported the total synthesis of aliskiren 
(Rasilez), a novel renin inhibitor, by using the asymmetric Michael reaction 
of isovaleraldehyde and nitroethene, generated from 2-(benzoyloxy)-1-
nitroethane in situ, as one of the key steps (Scheme 2).16  

 
Scheme 2. Michael reaction in the total synthesis of aliskiren (Rasilez) by 

Novartis 
 
The Michael reaction of an a-alkoxy aldehyde and nitroalkene was 

successfully employed in the pot- and time-economical total synthesis of (–)-
oseltamivir (Scheme 3) (one pot, 60 min).17 
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Scheme 3. Total synthesis of (–)-oseltamivir: one pot, 60 min 

 
Diphenylprolinol silyl ether is a secondary amine catalyst with a bulky 

substituent, and its basicity is rather low. It activates an aldehyde and an a,b-
unsaturated aldehyde selectively, but it has no effect in other reactions 
because it is a weak base. This catalyst is also effective in domino reactions. 
A domino reaction is a reaction involving two or more bond-forming 
transformations that take place under the same reaction conditions without 
the addition of further reagents and catalysts.18 One of the early successful 
examples is Enders’ domino Michael/Michael/aldol condensation reaction 
of an aldehyde, nitroalkene, and a,b-unsaturated aldehyde, affording 
substituted cyclohexene derivatives with excellent enantioselectivity (eq. 7).19 
 

 
 
The domino Michael/Henry reaction of succinaldehyde and a 

nitroalkene was catalyzed by diphenylprolinol silyl ether to afford a 
cyclopentane derivative (Scheme 4).20 This is a formal [3+2] cycloaddition 
reaction, successfully used in the three-pot synthesis of prostaglandin E1 
(PGE1) methyl ether,21 and a short synthesis of beraprost.22  
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Scheme 4. Synthesis of PGE1 methyl ester 
 
Diphenylprolinol silyl ether was also utilized in the total synthesis of a 

steroid. A domino Michael/intramolecular aldol reaction of nitroalkane 7 
and an a,b-unsaturated aldehyde was catalyzed by diphenylprolinol silyl 
ether to afford a bicyclo[4.3.0]nonane derivative 8, which corresponds to the 
C and D rings of the steroid, with nearly enantiomerically pure form, with 
the generation of an all-carbon quaternary center (Scheme 5).23 This 
compound 8 was efficiently converted into estradiol methyl ether.  
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Scheme 5. Synthesis of estradiol methyl ether 
 
Recently, the Michael reaction of a ketone as a nucleophile was reported, 

in which use was made of two amine catalysts such as diphenylprolinol silyl 
ether and hydroxyproline (eq. 8).24 In this reaction, the key nucleophile is an 
enolate, which is generated from a ketone in the presence of a weak acid and 
a base (eq. 9).25  
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excellent diastereoselectivity. In this domino double Michael reaction, nearly 
enantiomerically pure product was obtained. This is because the chiral 
catalyst is involved in both steps and kinetic resolution occurs in the second 
Michael reaction. Using this reaction as a key step, Corey lactone was 
synthesized in a one-pot reaction. 

 

 
Scheme 6. Synthesis of Corey lactone 

 
In summary, diphenylprolinol silyl ether is an effective organocatalyst 

for both the enamine and the iminium ion as reactive intermediate. Using this 
catalyst, new asymmetric reactions have been reported¾chiral complex 
structures are constructed by a domino reaction.27 Several successful 
combinations of this organocatalyst and metal catalysts have been reported.28 
The combination of a photocatalyst and organocatalyst is a growing field.29 
Applications of the asymmetric reaction catalyzed by this catalyst are 
increasing¾natural products and pharmaceuticals are effectively 
synthesized by this catalyst.   
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